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1 Introduction
1.1 Ada

Ada is the United States Department of Defense's {(Dol)
newest programming language. Ada was born in an era of
rising software costs and a proliferation of programming
languages within the DoD. To halt thi!s software crisis, the
DoD developed Ada. Ada was to become the common, high-ordes
programming language for all organizations within the Lel.
Since the majority of software costs in the DoD were con-
nected with embedded systems (5], it is not surprising that
Ada was designed with real-time programming {in mind.

Current estimates (18] show that the DoD spenda 31.
billion a year on software for embedded, real-time computer
systems for missile guidance, communicatlions control, and
weapons firing. This value is growing at a compound annus]
rate of 17%. The Ada share of this market is increasing as
Ada recelves acceptance and older languages are phased out.
Initially, Ada received staunch opposition and required thre
DoD to take steps to ensure Ada's acceptance.

DoD Directives 3405.1 and 3405.2 {21,22) were drafted
and signed into effect in 1987 making Ada the single, commocr,
high-order programming language within the DoD. Addition-
ally, these directives mandated the use of Ada in intel-
ligence systems, command and control systems, and weapons
systems. The North Atlantic Treaty Organization (MATO) has

also established policies that mandate the use of Ada abroad




(4], Adas wll, B@ 363 & A.mmi: .3 Butopean prolYectls,
lacludlng "ne Bufepean Jpece AJency's apace atatlion projecet,
Aledus ELIgAT aviunlics, and it tTeaflflc contic)l aystems.
Withnin %he DwD, Ada wl.l Se wsod tTo piogtam the on-board,
sabeadded, fsal -Zleme tomputer syvliems of the Alr Force's
Advanced Tactical FPighter, tThe Atsy’'s Light Hellcopter
Expecimmnnial, and "he Bavy 3 Mveanced Tactical Alrcratt (18],
The commi%%ment %u Ada o 3%f3ng, not only Iin the United
$tates Dut altnad ales.  This commitiment !3 especially

strong in the atea ol emdedded, teal-time systems.

1.¢ (mptecise Compulation

The concepl of imptecise computation Is quite stralght-
totwatd (L1-1)1. For some applications, approximate results
ate adequite when the nature of the computation involves
lengthy computaltion time. Under real-time computation
congsttaints, these lengthy computations may never be able to
tinish. When the degree of accuracy of the intermediate
resulte ~f a computation is non-decreasing as more processor
time ls spent to obtain a result, the process ils called a
monotone process (13]) I1f the monotone process completes
normally, it will produce a precise vesult. However, if the
monotone process times out prior to completion, it produces a
result that is not precise, or imprecise. Although the
imprecise result is not as precise as originally desired, it

may still be of use to the application.




Acceptable imprecise results can be returned when the

structure of a computation is iterative [(20]. Many iterative
numerical computations fall into this category (15,16].

Monte Carlo simulation is another prime iterative target.
Monte Carlo simulation has been used to determine radiation
shielding and nuclear reactor criticality [9]. An example of
the Jacobi method used to solve linear systems of equations
and an example of Monte Carlo simulation used to perform
integration of a curve are presented later in this paper as
imprecise computation examples. Iterative computations are
not the only type of computation that can be implemented as
an imprecise computation. Additionally, some non-iterative
computations can be reformulated as ilterative computations
and used as an imprecise computation ([(3].

There are two language primitives required by the
programmer to implement an imprecise computation application.
These primitives are "impreturn" and "impresult" [11,12].
Impreturn sends imprecise results and error indicators from
the callee to the caller. Impresult binds & handler proce-
dure to an imprecise computation. The handler is called to
"massage”" the imprecise result before it is returned.

Imprecise computation is especially applicable to
real-time computer systems. Under severe time constraints,
the imprecise computation will return an imprecise, thcugh
correct value. It is here that the link between Ada and

imprecise computation lies.




1.3 Ada and Imprecise Computations

There has been no {n-depth, published woirk accompilsted

in an effort to correctly implement imprecise compulaticra it

Ada. Although this topic has been cursorily addresses
(2,13], no immediately implementadble solutions have beet
identified. The committment to Ade In the teal! t:me stetas =
sharply growing, while the concept of i1mprecise comgulal,cr
continues to increase its following. By ispiemert:rg
imprecise computations in Ada, the (es!-tiew systen Jes:gre;
is given a viable tool in designing state of trhe a7, fau,?
tolerant, real-time computer systems. {t wap fot ‘* o tessct

that this research project was undettaken.




¢ Design
2.1 GCoals and lritesrla

ThAls (080atch elidi! Deadan wilh YEe Joss of iEvest.
FAZing ol povsidile 2pPCuaches i iMmp.otmrl ieg Npiwd .8
computat lony 1a standacd Ade This inc.wled s tua. lng.emet
Catlon and Testing of leasibdie spprfoachen becs.oe Als
AYPPRLTe Zhe Bl "wate sninseling ptincip.es of (tfvtmmt.ct
Ridling, modulagifly, snd o< ig8atlor [S., the (Wmpie.. 2@
computatlon \eplementatlion wouid e » seil cortlalred acduie
that s cohesively sttong Vimwel conplderationr wan g vetr ¢
Ctoalting & woll sttucluted solliwere ayvtens. Thix in tuln
would Rtanslalte 2o ease of use on tThe pat? of the tes. tine
system deslynet who would uiltlimetely vee he imprecise
computallion module. The crilerlas for eveivating each
approeach to lmplementing iaprecise computetions in Ads
evolved ftom these considetatllions.

The evalua%lon criterla rtepresented varlied requirements,
desires and concerns. Because this ispleaentation would bde
enployed In a teal-time system, efficiency was a key require-
ment. An inefticlient Impiementation would not be tolerable.
Portability was another vital concern. Ada was designed to
be portadble. Because the name “Ada”" (s trademarked, no
dlalects or subsets are legally allowed. The implementation
should In no way rely on the underlying machine or operating
system. [f the implementation were too unruly or difficult

to understand, it would probably not be utilized. Therefore,




ease of programming was a crucial critertion. It |s easy to
tind a solution to a problem when the constraints on the
ptoblem are changed In midstream. Likewise, 1t {s easy for
someone approaching the problem of implementing imprecise
computations !n Ada to come up with an easy solution, but one
which involves changes to the Ada standard. The goal of this
research was to implement imprecise computations in standard
Ada, without additions that are contrary to the standard.
Finally, the lmplementation would have to produce correct
results according to the tenets of imprecise computation.

In summary, each approach was analyzed and evaluated
based on the following criteria: efficlency; portability;
ease of programming; whether or not it could be implemented
using the current (standard) version of Ada, and; correct-
ness., Three general approaches to implementing imprecise

computations in Ada were identified.

2.2 Approaches to Implementation

There were three approaches to implementation of
imprecise computations in Ada identiflied. Subsequently, each
approach was analyzed and evaluated based on the criteria
defined in Section 2.1. The approaches identified involved
shared memory and variables, asynchronous transfer of

control, and atomic computation loops.




2.2.1 Shated Memoty / Shated Yatled.es

{n this method, co2p8iating taels #04iC OMAwE) .v.allune
containiag common “alledles Such 48 Docledr [isys A timssot
tlag locatlon would De es2adilaned whetelr o Times 1adb woei.d
tlag a timeout condition. The compulatich tess wo.id be
tequirted to check this tlag tepeatedly during ils esecutlich
This requlires that edach compuleltion tamd conlainr & poilling
mechanism. Polling not only violates the princlple ¢t
modulazity, but (t also imposes signilicent ovetheed it dcrne
frequently senough to quarantee fast response [(2]. Polling
reduces the efficlency of the executing code. An edditionas]
problem lies in the use of the pragms “SHARED". The Adas
standard (23) provides pragma SHARED to allow two tasks to
communicate via share4 variables. These shared variables are
identified as such by the pragma SHARED statement. This
ensures that the tasks are properly synchronized when
accessing the shared varlable. However, the Ada development
environment avalilable to us, the Verdix Ada Development
System (VADS), does not implement the pragma SHARED (24).
Due to these insurmountable problems, this approach was

rejected for implementation.

2,2.2 Asynchronous Transfer of Control
There are basically two different ways any task can
influence another task. A task can abort another task or it

can rendezvous with it. The abort statement is not an




sffective commualicalions anend Balovnen (H840 408 ot e Castll)
1a tesam ol eseculleoa tiam (1]]. VThe tanbeivews Is by
dofinition & synchiensws Gsdas of comButicalion  Noweves,
thaze 10 00 andas f6s s ol (0 oyl easuwtly Inte: s wpt
anether tash. Bresgel 16) polatles oul (2T (hiID 10 ¢ 0wl
of @ conllict dDetvoen the tue Qedle ¢f Daving walaleiivwplibls
ctitical toqlons and ehett i1atestupl lotlency In & pielin
naty vesdlien of Ada 110), the cscoplion *TAILUEE" wen copetle
ot Delng taloed ia othet tesde. NRewver, Al (aslute v
phased ocut |ia the Ads otandacd.

Some tesaeich hos sttompled to ostend the Alde tasting
model ond allow o R38h R0 esynchionowsly Intettupl enether
task. At Deltft Unlvecsity of Technelogy, tesemtchets have
constructed & custoa lapleasatatien of Ade that sllew
asynchronous Interrupts (19). Baker (2) presente & possible
implementation of imprecise competastions, et rellies on o
non-standard package to ssynchronously talse exceptions.

Both of these approaches atre coaprised of non-stendard Ade
and hence are not portable.

Asynchronously raising an exception in & computation
would be a straightforvard mecheanisa tovards iaplemsenting
imprecise computations in Ada. Unfortunately, there exists
no standard Ada way to accomplish this. Any non-standard
solution would not be portable and not acceptable. This

approach was summarily rejected.




2.2.3 Atomlc Computatioa Loop

This ap@ioach statted wilh the concepl of treating the
COMPUtAtLion (00D 43 aa ATewlc wall. The loop would de
teig9eted each itetetion Dy 4 mwallos tash when sufficient
Cles was avalladle prlos to 1t desdline. The computation
loop would not be iaterrugled oace It stlattled the curzent
ltezatlion Thls approach Inttodyuced aleict timing concerns
because ol the perlotamnce ol the Ade tesding mode! implemen-
tatlone.

The Ada tesking medel has deen shetply criticlized due to
ity alleged lnetfficiency. The designete of the nev Nelllire
missile (14] opted not te use the tesking festures becsuse of
critical time consttelints. A recent study wes conducted by
Buzger and Nlelsen (1] to detetolne the overhesd of Ads
tasking tacilities. The wsescteaesnts wvete asde onh 8 Digitai
EBquipment Corporation (DEC) VAX 0600 tunning ODEC Ada V] .2.

A3 & dDaseline, a2 simple precedute coll teguited 11 wicto-
seconds. But a2 simple, non-persmeter rendezvous tequitred 50)
microseconds. This disparity mendated » Judicious use of the
rendezvous In the isplementation of imprecise computations in
AMa. Porx this reason, the atomic computation loop approach
vas broken down into & synchronous version and an asynchro-
nous version.

In both versions, a computation task {s created that
performs the reqguitred function. This task contains the

computation loop that refines the precision of the result.
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The computation loop contains IMPRETURN statements that
return the current, imprecise result. When the deadline
occurs before the computation loop achieves a precise result,
the appropriate handler is invoked and the computation loop
s stopped. If the computation loop runs to completion, it
signals via the compute rendezvous in the synchronous version
and via a boolean flag in the asynchronous version.

As the name implies, the asynchronous version does not
interfere nor does it rendezvous with the computation task.
The asynchronous version initializes the computation loop
with input parameters by way of a TIMER task. After initial-
ization, the TIMER task starts the computation loop. The
loop continues unmolested until it either completes or is
stopped due to the deadline. The TIMER task has a higher
priority than the computation task which guarantees that the
TIMER task will execute when necessary. The TIMER task
monltors the progression of time as it approaches the
deadline by delaying a duration proportional to the amount of
time left before the deadline. In the meantime, the computa-
tion task is storing imprecise results and error indicators
via the IMPRETURN call. When TIMER times out, it grabs the
most recent copy of the imprecise results, invokes the
appropriate handler, and then returns the result. If the
computation loop completes, it signals via an IMPRETURN call
with the final result value and zero error indicator.

The synchronous version relies on frequent rendezvous.




id

This version initializes the coaputatien leep wilsk ikput
parameters and then calls for a rendesvous wilh the compule-
tion task each time the compute loop 18 o be Gsecuted. Wher
the deadline occurs, the appropriate handler is invosed and
the computation loop is stopped. [t the computetion ioop
runs to completion, it signals via the coapute entiy cell and
is subsequently stopped.

Both versions have their respective advantages enc
disadvantages. The synchronous version is less efficient
because of the frequency of rendezvous, but maintains mote
control over the computation loop. Conversely, the asynchro-
nous version requires no rendezvous with the computation loop
and relies on the run-time systea's efficient and correct
implementation of the Ada "delay" statement. Both versions
required no modifications to standard Ada. Efficiency, a key
design criterion, was initially a majcr detractor of the
synchronous version. A system spending more time completing
rendezvous and less time computing was intolerable. However,
study of potential imprecise computation targets such as the
Jacobl method for solving linear systems of equations (15,16)
showed that these computations may only loop about 10 to S0
times before a precise result is calculated. The rendezvous
overhead is trivial compared to a Monte Carlo application
which might loop about 10000 times before a precise result |is
obtained. It was apparent that both versions were viable

approaches to implementing imprecise computations in Ada.
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J 1Implementation
3.1 Ada Specifics

To promote sound software engineering principles, the
data type definitions, variable declarations, and associated
procedures of the imprecise computation system are located in
a single, strongly cohesive module. In Ada, such a module is
known as a package. Further, because the result type of each
imprecise computation is unique, the imprecise computation
package would have to allow dlffering result types. For
example, the Jacobi imprecise computation requires a 3-
element array of floating point numbers as its result, while
the Monte Carlo imprecise computation of the area of a circle
merely requires a single floating point number for its
result. It would be quite unruly to construct and maintain
an imprecise computation package for any conceivable result
type. Portunately, Ada provides a means to circumvent this
situation.

Ada provides the "generic" package. This allows the
designer to implement a mechanism without ties to specific
data types. According to Booch [5]), generic program units
define a unit template, along with generic parameters that
provide the facility for taliloring that template to particu-
lar needs at compilation time. At compile time, a generic
package is instantliated by specifying the actual parameters
to be substituted for the generic parameters, thus creating

an instance of the package. Generic parameters can be types,
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values, objects, and/or subprograms (95).

One of the generic paramster types repiesenls the
imprecise computation. Because It 18 necessary fo: Uhe
imprecise computation to maintain its state ianformstion, the
imprecise computation must be constructed as a task.
Accordingly, one of the generic parameters is the imprecise
computation task type and anothe:r parameter !s an access type
that points to the task type. Other generic parameter types
include the result type, the error indicator type, and the
input type. Generic paramster sudprograms ate used to call
the entry points in the imprecise coaputation task. These
procedures are necessary because the iamprecise computation
package has no knowledge of the specific task structure until
instantlation. Therefore, the task entry points cannot be
hard-coded into the imprecise computation package, even |if
the entry names are standardized. The actual procedures
corresponding to the generic subprograms are simple, one line
programs that call the appropriate entry points. These entry
points vary between the asynchronous and synchronous {mpre-
cise computation packages.

Through the use of the generic package, single synchro-
nous and asynchronous imprecise computation packages can be
constructed. At compilation, new instances of these packages
can be created by specifying the appropriate generic param-
eters. This allows the luxury of having one asynchronous

package and one synchronous package to modify and maintain,
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but at the same time allowing unlimited instances based on

the specific computation.

3.2 S8ynchronous Imprecise Computation

The package SYNCHRONOUS_IMPRECISE_COMPUTATION has been
implemented as a generic package. This package is composed
of generic parameters required for instantiation and proce-

dures vislble from outside the package.

3.2.1 Generic Parameters
The package SYNCHRONOUS_IMPRECISE_COMPUTATION contains

the following generic parameter list:

type COMPUTATION is limited private;

type COMPUTATION_PTR is access COMPUTATION;

type RESULT_TYPE is private;

type ERROR_INDICATOR_TYPE is private;

type INPUT_TYPE is private;

with procedure INITIALIZE(THE_COMPUTATION : in
COMPUTATION_PTR;

INPUT : in

INPUT_TYPE);

with procedure COMPUTE(THE_COMPUTATION : in
COMPUTATION_PTR;

COMPUTATION_COMPLETE : out
boolean);
with procedure HANDLE(THE_COMPUTATION ¢ in
COMPUTATION_PTR;
HANDLER_NUMBER ¢t in
integer;
LAST_VALUE t in

RESULT_TYPE;
LAST_ERROR_INDICATOR : in




s

ERRO& _INDICATOR _TYYPE ),

with procedure STOP(THE_COMPUTATION : i1a COMPUTATION PYS),

The type COMPUTATION corresponds to the task type ol the
desired imprecise computation. The task type serves a8 &
template that is used to create instances ol tesk objlects
[5]. In this way, multiple lmprecise computation tastks sy
be active simultaneocusly. The task type .3 declatel 3
limited type because neither assignasnt not the predetined
comparison for equality and inequality are detined tor
objects of task types (23).

The type COMPUTATION_PTR provides an eccess type to the
task type COMPUTATION. Vhen a pointer of type
COMPUTATION_PTR 1is allocated using the “nev® statement, o
task in the form of task type COMPUTATION is crested. The
pointer variable now points to the active task aend is used to
reference the task entry points. This pointer 1s needed in
the imprecise computation package because it effectively
allows a task to be passed as an argqument to a procedure.
Actually, the pointer is being passed but the result is the
same. In this way, an allocated pointer varliadble of type
COMPUTATION_PTR is an effective and efficlent means of
manipulating the computation task.

The generic parameter RESULT_TYPE is merely the data
type of the result that the imprecise computation generates,
Here lies the beauty of Ada's generic facility, for any valid

data type can be used to instantiate the generic package.
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The type ERROR_INDICATOR_TYPE provides the means of deter-
sining the exact precision of an imprecise computation's
tesult. It can be instantiated with the data type that is
most applicable to the imprecise computation.

The generic parameter INPUT_TYPE ils the data type used
to initialize the computation task. Often, several items are
needed to properly initlalize a computation task. 1In this
case, INPUT_TYPE should be instantiated with a record type
composed of the necessary items. The remaining generic
parameters in the package SYNCHRONOUS_IMPRECISE_COMPUTATION
are generic subprograms.

Rach generic subprogram is needed in order to rendezvous
with various entry polints of the computation task. The user
of the SYNCHRONOUS_IMPRECISE_COMPUTATION generic package must
construct his own computation task type. This task type must
include several entry points. An initialization entry point
receives input data. A compute entry point performs one loop
of the computation. One or more handler entry points are
required to manipulate the imprecise result. Finally, an
entry point to stop the task is required in lieu of the abort
option. The names of these entry points are not relevant,
but must be properly reflected in the procedures used to
instantiate the generic package. For example, consider a
task type with the following structure:

task type EXAMPLE is

entry INITIALIZE_THE_TASK(...);
entry COMPUTE_ONE_LOOP(...);
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entry HANDLER(...);
entry HALT_THE_TASK;
end EXAMPLE;
The procedure for stopping the task that would be used to
instantiate the generic package would look like the
following:
procedure STOP_TASK(COMP_PTR : in COMPUTATION_PTR) i»s
begin
COMP_PTR.HALT_THE_TASK;
end STOP_TASK;
Note that the procedure can have any name. At instantiation,
the procedure name is bound to the generic subprogram STOP.
So whenever STOP is called in the imprecise computation
mechanism, STOP_TASK will be called at run-time. Each
generic subprogram has clearly defined purposes.

The procedure INITIALIZE takes two parameters,
THE_COMPUTATION and INPUT. THE_COMPUTATION references the
computation task calculating the imprecise computation.
INPUT is the data required to properly initialize the
computation task. This procedure must be instantiated with a
simple procedure that merely requests a rendezvous with the
initialization entry call of the computation task.

The procedure COMPUTE initiates a rendezvous with the
compute entry point of the computation task. Procedure
COMPUTE takes two parameters, THE_COMPUTATION and
COMPUTATION_COMPLETE. The former is a pointer to the

computation task. The latter is a boolean flag that is set




i

by the computatlion task to dlest the lapreciae compulaltion
mechaniss that & precise resulltl has dDoea produced. It the
computation task does not produce & precise tesult by ita
deadline, & handler tash must De called.

The procedure MANOLE Initiates & tendezvous with a
specitlied handler entty point wvithia the coaputation task.
The pactameters ftor this procedutre ate THE_COMPUTATION,
HANDLER _NUMBER, LAST _VALUE, and LAST_ERROR_INDICATOR. Agaln,
THE _COMPUTATION Is & pointer tetlerencing the computation
task. There may be motre than one handler entry point in the
computation task. The parameter HANDLER_NUNMBER specifles
which handler entty point to call. The handlezr entry points
may de implemented s & femily of entry calls wvith a discrete
range [(23). It not, procedure HANDLE will be required to
decipher the value of HANDLER_NUMBER and call the appropriate
entry point. The parameters LAST_VALUER and
LAST_BRROR_INDICATOR represent the most current imprecise
result and error indicator returned by the imprecise computa-
tion task. They are passed to the handler entry point where
they can be modified 1f necessary. A modified imprecise
result and error indicator is saved in the standard method by
issuing an IMPRETURN call at the end of the handler rendez-
vous. After a precise result has been computed or a handler
executed, the computation task must be stopped.

The procedure STOP initliates a rendezvous with the stop

entry point of the romputation task. A boolean flag is then
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set and subsequently causes an exit from the internal loop
structure. Procedure STOP requires one parameter,
THE_COMPUTATION. This parameter i{s a pointer referencing the
computation task.

At compilation time, all of the preceding generic types
and subprograms are instantiated with the data types and
procedures developed by the user. After instantiation, a
custom synchronous imprecise computation package exists in
the user's library. Now, the user has the capability of
accessing the procedures bundled in the synchronous imprecise

computation package.

3.2.2 Procedures

There are two procedures in the generic package
SYNCHRONOUS_IMPRECISE_COMPUTATION as dictated by the tenets
of imprecise computation [11-13]. However, the name of the
procedure IMPRESULT has been changed to IMPCALL because it
seemed more fitting of its role. The other procedure remains
as IMPRETURN. The procedure declarations are deflined in the
generic package specification in the following manner:

procedure IMPCALL(THE_COMPUTATION : in out
COMPUTATION_PTR;

THE_HANDLER : in integer;
DEADLINE s in

CALENDAR.TIME;
INPUT ¢ in INPUT_TYPE;
FINAL_RESULT : out

RESULT_TYPE);




20

procedure IMPRETURN(INTERMEDIATE_RESULT
RESULT_TYPE;
ERROR_INDICATOR : in
ERROR_INDICATOR_TYPE) ;

in

Procedure IMPCALL requires five parameters. Parameter
THE_COMPUTATION is a pointer to the computation task that
will be computed in an imprecise fashion. 1In the event the
computation task does not complete before its deadline,
parameter THE_HANDLER indicates which handler routine to
call. Parameter DEADLINE specifies the absolute time when
computation should cease. The computation task is ini-
tialized with the contents of the parameter INPUT. PFinally,
the out parameter FINAL_RESULT is the precise result if the
computation task completes, or the imprecise result after
being passed through the handler routine.

Procedure IMPRETURN is the means by which the computa-
tion task returns imprecise results and error indicators to
the imprecise computation mechanism. The two parameters of
procedure IMPRETURN reflect this design. Parameter
INTERMEDIATE_RESULT is the current imprecise result, while
parameter ERROR_INDICATOR indicates the precision of this
result.

An imprecise computation application can only interface
with an instantiated imprecise computation package via the
two procedures IMPCALL and IMPRETURN as specified in the
package specification. The package body contains the code

that implements these two procedures. However, the data




21

types, variables, and procedures in the package body are
invisible to the user. These entities are only visible
within the package body itself (23]). The package body of
SYNCHRONOUS_IMPRECISE_COMPUTATION contains two variables that
are global within the package body.

CURRENT_VALUE
CURRENT_ERROR_INDICATOR

RESULT_TYPE;
ERROR_INDICATOR_TYPE;

ey oo

These varlables reflect the current imprecise result and its
assoclated error indicator. These variables are updated
solely by the IMPRETURN procedure. Procedure IMPCALL is
implemented in the package body of

SYNCHRONOUS_IMPRECISE_COMPUTATION in the following way:

procedure IMPCALL(THE_COMPUTATION : in out
COMPUTATION_PTR;
THE_HANDLER ¢ in integer;
DEADLINE :t in CALENDAR.TIME;
INPUT : in INPUT_TYPE;
FINAL_RESULT : out RESULT_TYPE) is
COMPUTATION_COMPLETED : boolean;
TIME_HACK : CALENDAR.TIME;
begin
INITIALIZE(THE_COMPUTATION,
INPUT);
loop

COMPUTE ( THE_COMPUTATION,
COMPUTATION_COMPLETED);

exit when COMPUTATION_COMPLETED;

TIME_HACK := CALENDAR.CLOCK;

if CALENDAR.">"(TIME_HACK,
DEADLINE) then
HANDLE (THE_COMPUTATION,
THE_HANDLER,
CURRENT_VALUE,
CURRENT_ERROR_INDICATOR) ;
exit;
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end 1f;
end loop;
STOP (THE_COMPUTATION) ;
FINAL_RESULT := CURRENT_VALUE;
end IMPCALL;

The algorithm involved is straightforward. The computa-
tion task is first initialized by calling the procedure
INITIALIZE. This generic subprogram in turn completes a
rendezvous with the computation task, passing it the appro-
priate data in parameter INPUT. The algorithm then enters a
loop. This loop will be executed when the computation
completes or the deadline is reached. First, the procedure
COMPUTE is called. This generic subprogram in turn enters
into a rendezvous with the computation task at the compute
entry point. Remember, this rendezvous causes the computa-
tion task to complete one iteration of the computation. 1If
this causes the computation to complete, it signals so via
the COMPUTATION_COMPLETED parameter. After COMPUTE finishes,
the loop will be exited if the computation has completed. If
not, the system clock is sampled and compared to the dead-
line. If the deadline has expired, the procedure HANDLE is
called which in turn initiates a rendezvous with the computa-
tion task at the handler entry point. The loop is exited
after the procedure HANDLE completes. If the deadline has
not expired, control returns to the top of the loop. After
termination of the loop, procedure STOP is called, ultimately

completing a rendezvous with the computation task at the stop

entry point. The final precise or imprecise result is then
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copied to the paramstezr FINAL_RESULT and subsequently passed
back to the caller.

The procedure IMPRETURN is the means by which the
computation task returns imprecise results and error indice-
tors. There is no algorithm required because this process
merely involves the passing and subse~uent storing of dats.

This procedure is implemented in the following way:

procedure IMPREBTURN(INTERMEDIATE_RESULT : In

RESULT_TYPE;
ERROR_INDICATOR : in
ERROR_INDICATOR_TYPE) 1is
begin
CURRENT_VALUB ¢= INTERMEDIATE_RESULT;

CURRENT_ERROR_INDICATOR := RRROR_INDICATOR;
end IMPRETURN;
The input parameters INTERMEDIATE_RESULT and BRROR_INDICATOR
are copied to the hidden variables CURRENT_VALUE and
CURRENT_ERROR_INDICATOR, respectively.

The complete package specification and package body of
SYNCHRONOUS_IMPRECISE_COMPUTATION can be found in Appendix A.
Figure 1 presents the synchronous imprecise computation
mechanism in a graphical manner, using the symbols defined in
(5). This approach to imprecise computations has been
implemented in standard Ada code and should compile on any
validated compller. The user need only instantiate this
package with his own data types and subprograms. Actual
imprecise computation examples using this package are given

in Section 4.
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3.3 Asynchronous Imprecise Computation

The package ASYNCHRONOUS_IMPRECISE_COMPUTATION has been
implemented as a generic package. This package is very
similar to the synchronous implementation in terms of user
interface, but internally is quite different. Like the
synchronous version, this package is composed of generic
parameters required for instantiation and procedures visible

from outside the package.

3.3.1 Generic Parameters
The package ASYNCHRONOUS_IMPRECISE_COMPUTATION contains

the following generic parameter list:

type COMPUTATION is limited private;

type COMPUTATION_PTR is access COMPUTATION;

type RESULT_TYPE is private;

type ERROR_INDICATOR_TYPE is private;

type INPUT_TYPE 1s private;

with procedure START_COMPUTATION (THE_COMPUTATION : in

COMPUTATION_PTR;

INPUT T in

INPUT_TYPR);
with procedure HANDLE(LAST_VALUE :
RESULT_TYPE;
LAST_ERROR_INDICATOR : in out
ERROR_INDICATOR_TYPE);
The generic data types are identical to those in the generic

package SYNCHRONOUS_IMPRECISE_COMPUTATION. However, the

generic subprograms are quite different. Not all of the
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generic subprograms in this asynchronous version are used to
rendezvous with the computation task. The user of the
generic package ASYNCHRONOUS_IMPRECISE_COMPUTATION must
construct a task type that contains a single entry point.
When this entry point is called, input data is passed to the
task. After initialization, the task begins iterating and
producing imprecise results. The task proceeds without any
further interruption or rendezvous, asynchronously.

The generic procedure START_COMPUTATION is the procedure
called by the imprecise computation mechanism to initialize
the computation task. The computation task receives input,
injitializes, and then starts iterating. Procedure
START_COMPUTATION requires two parameters. Parameter
THE_COMPUTATION is a pointer to an active task. The neces-
sary input data is passed via parameter INPUT. Because the
computation task type has only a single entry point,
START_COMPUTATION is the only generic subprogram needed to
initiate a rendezvous.

By virtue of the definition of a rendezvous (23], an
asynchronous approach to imprecise computations cannot
utilize this synchronous mechanism. In the synchronous
implementation, handler entry points are included in the
computation task type. This is possible because the synchro-
nous imprecise computation mechanism closely governs the
executing computation task. However, in the asynchronous

version, the computation task is turned loose. When a
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deadline is reached, the imprecise result must be immediately
passed to a handler. For this reason, the handler routine is
not part of the computation task type, but is a separate
procedure. Therefore, the generic procedure HANDLE does not
require the task pointer variable required by the synchronous
handler. Also, the synchronous version includes a handler
number which facilitates the use of entry families when the
handler is an entry call. This parameter has not been
included in the asynchronous version.

The generic procedure HANDLE requires two parameters.
The parameter LAST_VALUE supplies the handler routine with
the last imprecise result returned via an IMPRETURN call.
Likewise, the parameter LAST_ERROR_INDICATOR provides a means
of determining the precision of LAST_VALUE. Note that both
of these parameters are of mode "in out". This is necessary
because the asynchronous handler is a separate procedure and
not a part of the task environment as it is in the synchro-
nous version.

When the preceding generic types and generic subprograms
are instantiated with appropriate data types and procedures
at complilation time, a custom asynchronous imprecise computa-
tion package is created and placed in the user's library.
This package contains the bundled procedures that form the

crux of the asynchronous imprecise computation mechanism.
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3.3.2 Procedures

In accordance with the theory of imprecise computations
{11-13]), there are two visible procedures in the generic
package ASYNCHRONOUS_IMPRECISE_COMPUTATION. Like the
synchronous version, the name of the procedure IMPRESULT has
been changed to IMPCALL. The other procedure remains as
IMPRETURN. The procedure declarations are defined in the

generic package specification in the following manner:

procedure IMPCALL(THE_COMPUTATION : in out
COMPUTATION_PTR;
DEADLINE : in
CALENDAR.TIME;
in
INPUT_TYPE;
out
RESULT_TYPE);

INPUT

FINAL_RESULT

oe

procedure IMPRETURN(INTERMEDIATE_RESULT : in
RESULT_TYPE;

ERROR_INDICATOR : in
ERROR_INDICATOR_TYPE;
STOP_FLAG ¢ in out

boolean);

Procedure IMPCALL requires four parameters. The
parameter THE_COMPUTATION is a pointer to the imprecise
computation task. Parameter DEADLINE specifies the absolute
time when computation should cease. The computation task is
initialized with the value of parameter INPUT. Lastly, the
final result of the computation, whether precise or impre-
cise, is received via the parameter FINAL_RESULT.

Procedure IMPRETURN is called by the computation task in

order to return an imprecise result and its associated error
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indicator. The first two parameters, INTERMEDIATE_RESULT and
ERROR_INDICATOR, carry the imprecise result and error
indicator from the computation task to the asynchronous
imprecise computation mechanisa. Unlike the IMPRETURN in the
synchronous version, this IMPRETURN contains a third para-
meter. The parameter STOP_FLAG functions as a twvo-wvay
communication flag between the computation task and the
asynchronous imprecise computation mechanism. If the
computation task achieves a precise result, it issues an
IMPRETURN call with STOP_PLAG set to "true". If the deadline
has occurred, the computation task is signalled to stop via
STOP_FLAG when the next IMPRETURN call is issued. 1In this
way, the asynchronous lmprecise computation mechanism does
not have to explicitly stop the computation task. It merely
sets a flag which is communicated to the task when the task
makes its next IMPRETURN call. The package body contains the
code that implements these mechanisms.

In addition to the procedure bodies for IMPCALL and
IMPRESULT, the ASYNCHRONOUS_IMPRECISE_COMPUTATION package
body contains other variables and a task. These entities are
not visible to the user of the package. They are only
visible within the package body itself (23]). This package
body, because it embodies the implementation of a concept, |is
quite different from the synchronous version. The following

variables are included in the package body:

CURRENT_VALUE : RESULT_TYPE;
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CURRENT_ERROR_INDICATOR
STOP_COMPUTATION_FLAG

ERROR_INDICATOR_TYPE;
boolean := FALSE;

The variables CURRENT_VALUE and CURRENT_ERROR_INDICATOR hold
the last imprecise result and error indicator sent by the
IMPRETURN call. These variables are updated by the procedure
IMPRETURN in the course of computation or the procedure
HANDLE when the deadline has expired. The variable
STOP_COMPUTATION_FLAG is a boolean flag that holds the
current state of the computation. The flag is initlally set
to "false", so the computation is not to be stopped. The
flag will be set to "true" when the deadline explires or when
the computation task achieves a precise result. If the
deadline expires, the flag is set by the asynchronous
imprecise computation mechanism. If a precise result is
achieved, the flag is set during a call to procedure
IMPRETURN. A local task is also contalined in the package
body of ASYNCHRONOUS_IMPRECISE_COMPUTATION.

Vhile the computation task is iterating towards a
precise result, it is necessary to have another task moni-
toring the system time as the deadline approaches. This
monitor has been implemented as a task because it requires
the use of task priorities. If this monitor were implemented
as a called procedure, it could not be assigned a priority
{23). During the period of imprecise computation, there are
two tasks in the application executing. The computation task

is computing imprecise results while the monitor task is
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checking the deadline and then delaying. It is necessary for
the monitor task to have a higher priority so that when the
deadline occurs, the monitor task gets immediate control of
the processor. The monitor task in the package body of
ASYNCHRONOUS_IMPREBCISE_COMPUTATION has the following task
specification:
task TIMER |is
pragma PRIORITY(7);
entzy RUN_JOB(THE_JOB

INPUT
DEADLINE

in out COMPUTATION_PTR;
in INPUT_TYPE;
in CALENDAR.TIME);

end TIMER;

The monitor task has been called task TIMER to reflect its
function. The first statement of the specification sets the
task priority to 7, the highest priority allowed by the VADS
software used for development (24]. It ls imperative that
the user include the following statement in the computation

task:
pragma PRIORITY(O);

This will ensure that task TIMER can gain control of the
priority-driven processor. |

Task TIMER contains a single entry point called RUN_JOB.
This entry point is called from procedure IMPCALL when it
wants a particular computation task executed as an imprecise
computation. Entry point RUN_JOB receives three parameters
from procedure IMPCALL during the rendezvous. The parameter

THE_JOB is a pointer to a computation task. The computation
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task is initialized with the information stored in INPUT.
The parameter DEADLINE informs task TIMER of the point in
time when a result is expected. The backbone of the asyn-
chronous approach to imprecise computation is the body of
task TIMER.

The task body of task TIMER from the package body of
ASYNCHRONOUS _IMPRECISE_COMPUTATIONS has been implemented in

the following manner:

task body TIMER is

COMPUTATION_COMPLETED : boolean;

TIME_HACK ¢ CALENDAR.TIME;

TIME_LEFT ¢ float;

DELAY_TIME ¢ DURATION;

begin

accept RUN_JOCB(THE_JOB : in out COMPUTATION_PTR;
INPUT ¢ in INPUT_TYPE;
DEADLINE : in CALENDAR.TIME) do

START_COMPUTATION(THE_JOB, INPUT);

loop
TIME_HACK := CALENDAR.CLOCK;
TIME_LEFT := float(CALENDAR."-"(DEADLINE,
TIME_HACK));
DELAY_TIME := DURAT.ON(Time_iLkr?T / 2.0);
if DELAY_TIME < DURATION'SMALL AND THEN
DELAY_TIME > 0.0 then
DELAY_TIME := 0.0;
end {f;
if DELAY_TIME > 0.0 then:
delay DELAY_TIME;
else
STOP_COMPUTATION_FLAG := TRUE;
HANDLE (CURRENT_VALUE,
CURRENT_ERROR_INDICATOR);
end If;
exit when STOP_COMPUTATION_FLAG;
end loop;
end RUN_JOB;
end TIMER;

The body of task TIMER is basically one rendezvous. Proce-
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dure IMPCALL calls the RUN_JOB entry point of task TIMER when
an asynchronous imprecise computation task is to be run.
Task TIMER then initializes and starts the computation task
by calling the generic procedure START_COMPUTATION. After
entering the main loop, the system clock is sampled and
compared to the deadline. The time remaining is used to
compute a delay amount. Task TIMER will suspend itself via
the "delay" statement if sufficient time remains before
deadline. If the deadline has expired, the flag
STOP_COMPUTATION_FLAG will be set so that during the next
IMPRETURN call the computation task will terminate itself.
The generic procedure HANDLE will then be called and the loop
exited. If the computation task achieves a precise result
and subsequently signals via the procedure IMPRETURN, the
flag STOP_COMPUTATION_FLAG will be set and the loop exited.
When the loop is exited, the rendezvous completes, task TIMER
terminates, and the final result is left stored in the
variable CURRENT_VALUE.

Note that the variable DELAY_TIME is assigned a duration
value that is only one-half of the time remaining before the
deadline. This heuristic is necessary because of an anomaly

with the "delay" statement. The statement

delay 1.0;

suspends the task for at least one second. However, there is

no guarantee on the upper bound of the delay. Wwhile task
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TIMER is delaying itself, the computation task has control of
the processor. When TIMBR's delay is complete, task TIMER is
ready to be run again. Because TIMER was given a higher
priority than the computation task, task TIMRR should gain
control of the processor. However, the scheduler only checks
the 1ist of ready tasks at a specified frequency. VADS
checks at one second lntervals (24]). This time slice is much
too large for real-time systems. Digital Bquipment Corpor-

ation's (DEC) VAX Ada provides the atatement

pragma TIMEB_SLICE(statlic_expression);

where static_expression is a duration amount in seconds (8).
The DEC manual (8] points out that the amount of scheduling
overhead needed to support round-robin task scheduling
increases as the value of a time slice decreases. The
minimum recommended time slice is 0.01 seconds. A test wvas
constructed to evaluate this feature and the effects of
background tasks on the delay statement.

In order to determine the effect of background tasks on
the delay statement, the procedures DELAY_TRST and
DELAY_TEST_NO_TASK were designed. These procedures were run

on a VADS computer system and then augmented with

pragma TIME_SLICE(0.0l1 or 1.00);

and run on DEC Ada machines to investigate the best perxfor-

mance (0.01) and to compare the DEC Ada run-time system with
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the VADS run-time systea (1.00). The procedure
DELAY_TBST_NO_TASK was constructed in the following way:

with CALRNODAR; use CALENDAR;
with TEBXT_10; use TERXY_I10;
with PLOAT_I0; use PLOAY_I10;

procedure DRLAY_TERST_NO_TASK is

HACK]l, HACK2 : time;
TOTAL : tloat := 0.0;

begin
for COUNT in 1 .. 100 loop
HACK]l := clock;
delay 1.0;
HACK2 := clock;
TOTAL := TOTAL ¢+ float(HACK2 - HACK]);
put("Time difference for 1 second delay=>");
put(float (HACK2 - HACK1));
put_line(" secs.”);
end loop;
nev_line(3);
put ("AVERAGRE DERLAY WAS => %);
put(TOTAL / 100.0);
put_line(" secs.");
end DELAY_TRST_NO_TASK;

This procedure merely samples the system clock before and
after a one-second delay statement. The actual delay is
averaged over 100 delay statements. The procedure DELAY_TEST

includes a background task:

with CALENDAR; use CALENDAR;
with TEXT_IO; use TEXT_IO;
with FLOAT_IO; use FLOAT_10;

procedure DELAY_TEST is
pragma PRIORITY(7);

HACK1, HACK2 : time;
TOTAL : float := 0.0;

task EAT is
pragma PRIORITY(O0);
entry STOP;
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end EAT;
task body EAT is
COUNT ¢ integer := 0;
FINISHED : boolean := false;
begin
loop
select
accept STOP Ao
FINISHBD := true;
end STOP;
else
COUNT := COUNT + 1;
end select;
exit when FINISHED;
end loop;
end BAT;

begin
for COUNT in 1 .. 100 loop
HACK1l := clock;
delay 1.0;
HACK2 := clock;
TOTAL := TOTAL + float(HACK2 - HACK1l);
put("Time difference for 1 second delay=>");
put(float (HACK2 - HACKl));
put_line(" secs.");
end loop;
EAT.STOP;
nevw_line(3);
put ("AVERAGE DELAY WAS => ");
put (TOTAL / 100.0);
put_line(" secs.”);
end DELAY_TEST;

Note that the task EAT has a lower priority, thus simulating
the asynchronous imprecise computation task. Both of these
procedures were run on a VAX-11/780 under VADS, a VAX-11/780
under DEC VAX Ada, and a VAX 8700 under DEC VAX Ada.
Additionally, the DRC VAX Ada tests incorporated the time
slice pragma. The average delays, in seconds, for a one
second delay statement are summarized in Table 1. The VERDIX

system did not perform well in comparison to the DEC config-

urations. Even with TIME_SLICE set to one second in an
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CONFIGURATION IASK HO_TASK
VAX Ada
TIME_SLICE(1.00)
Average 1.00995(8700) 1.00995(8700)
1.01796(11/780) 1.00995(11/780)
Standard 0.0(8700) 0.0(8700)
Deviation 0.01866(11/780) 0.0(11/780)
Variance 0.0(8700) 0.0(8700)
0.00035(11/780) 0.0(11/780)
VAX Ada
TIME_SLICE(0.01)
Average 1.00995(8700) 1.00995(8700)
1.01676(11/780) 1.01005(11/780)
Standard 0.0(8700) 0.0(8700)
Deviation 0.00469(11/780) 0.001(11/780)
Variance 0.0(8700) 0.0(8700)
0.00002(11/780) 0.000001(¢(11/780)
VERDIX Ada
Development System
Average 1.84434(11/780) 1.27862(11/780)
Standard 1.13453(11/780) 0.23124(11/780)
Deviation
Variance 1.28716(11/780) 0.05347(11/780)

Table 1. Comparison of Configurations
and Task/No Task Option

effort to mimic the VADS inherent time slice the DEC Ada run-
time system clearly performed better.

It is apparent that some Ada run-time systems are better
geared for real-time applications. A serious real-time
designer would not implement his hard, real-time system in an

Ada development system such as VADS. 1In proving the via-
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bility of the package ASYNCHRONOUS_IMPRECISE_COMPUTATION, |t
became obvious that the testing would have to be accomplished
within the realm of a genuine, real-time Ada development
system. The package body however still contains standard Ada
code.

The procedure body for procedure IMPCALL in the package
body of ASYNCHRONOUS_IMPRECISE_COMPUTATION is implemented in
the following manner:

procedure IMPCALL(THE_COMPUTATION : in out
COMPUTATION_PTR;

DEADLINE : in
CALENDAR.TINME;
INPUT : in

INPUT_TYPE;
FINAL_RESULT : out
RESULT_TYPE) is

begin
TIMER.RUN_JOB(THE_COMPUTATION,
INPUT,
DEADLINE);

FINAL_RESULT := CURRBNT_VALUE;
end IMPCALL;
-
Procedure IMPCALL first calls the RUN_JOB entry point of task
TIMER, passing it a pointer to the computation task to run,
the initialization input, and the deadline. Procedure
IMPCALL remains in the rendezvous with task TIMER until a
final result is produced. Remember, when task TIMER ter-
minates, the final result is left in the variable
CURRENT_VALUE. Procedure IMPCALL copies the final result
into its output variable FINAL_BESULT and then completes.

The body of procedure IMPRETURN is implemented in the
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package body of ASYNCHRONOUS_IMPRECISE_COMPUTATION in the
following wvay:
procedure IMPRETURN(INTERMEDIATR_RESULT : in
RESULT_TYPRE;
ERROR_INDICATOR : in
ERROR_INDICATOR_TYPE;
8TOP_PLAG ¢ in out
boolean) |is
begin
if not STOP_COMPUTATION_FLAG then
CURRENT_VALUB t= INTERMEDIATE_RESULT;
CURRENT_BRROR_INDICATOR:= RRROR_INDICATOR;
end 1f;
if not STOP_FLAG then
S8TOP_FLAG := STOP_COMPUTATION_PFLAG;
else
8TOP_COMPUTATION_FLAG := STOP_FLAG;
end {f;
end IMPRETURN;
The first action IMPRETURN takes is checking the state of the
flag variable STOP_COMPUTATION_PFLAG that is local to the
package body. 1If this flag has not been set by task TIMER,
then the deadline has not occurred and the computation task
should continue. The local variables CURRENT_VALUE and
CURRENT_ERROR_INDICATOR are updated accordingly. If the flag
has been set by task TIMER, then the deadline has occurred
and no further updates to CURRENT_VALUE and
CURRENT_ERROR_INDICATOR are required. If the incoming
parameter STOP_FLAG is false, then the IMPRETURN call is
merely returning an imprecise result and its error indicator.
Parameter STOP_FLAG is set to the state of
STOP_COMPUTATION_FLAG so that the computation task is

informed when a deadline passes. If the parameter STOP_FLAG
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is true, then the computation task is signalling that the
computation task has completed. STOP_COMPUTATION_FLAG is set
to true which in turn signals task TIMER to terminate.

The complete package specification and package body for
ASYNCHRONOUS_IMPRECISE_COMPUTATION can be found in Appendix
B. Figure 2 presents the asynchronous imprecise computation
mechanism in a graphical manner, using the symbols outlined
in (5). This approach to imprecise computations has been
implemented in standard Ada code and should compile on any
validated compiler. However, this approach requires an
adequate run-time system to perform correctly. Actual
imprecise computation examples using this package are given

in the following section.

i mmmccccmcccmca———-
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Figure 2. Asynchronous Imprecise Computation
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4 Imprecise Computation Examples

The examples in this section demonstrate how the generic
packages SYNCHRONOUS_IMPRECISE_COMPUTATION and
ASYNCHRONOUS_IMPRECISE_COMPUTATION are used to construct

imprecise computation applications.

4.1 Monte Carlo Simulation

The Monte Carlo method can be used to simulate a myriad
of problems. Theoretical examples include the solution of
partial differential equations, the evaluation of multiple
integrals, and the study of particle diffusion (9]. Practi-
cal examples include the simulation of industrial and
economic problems, the simulation of biomedical systems, and
the simulation of war strategies and tactics (17]. The Monte
Carlo method is based on the general idea of using sampling
to estimate a desired result (17].

The area of a circle can be computed by the Monte Carlo
method [(17). The idea is to construct a square about the
circle such that the square encloses and is tangent to the
circle. Accordingly, the squarxe has sides equal in length to
the diameter of the circle. Then, random coordinate pairs
are generated that are within the square. Each coordinate
pair is tested to determine {f it is within the cirzcle. The
total number of coordinate pairs generated are counted and
divided into the number of coordinate pairs that fell within

the boundary of the circle. This fraction is then multiplied




- O = an mn E N GE I &GE = s ek = .

- eE e 9

by the area of the square to yleld an estimate of th~ area of

the circle.

This Monte Carlo method of determining the area of a
circle has been used to create synchronous and asynchronous
imprecise computation examples. The use of the generic
packages SYNCHRONOUS_IMPRECISE_COMPUTATION and
ASYNCHRONOUS_IMPRECISE_COMPUTATION is clearly demonstrated,

along with the necessary user-written code.

4.1.1 Synchronous Circle Imprecise Computation

The first file constructed contains the data types,
computation task type, and procedure declarations that will
be used to instantiate SYNCHRONOUS_IMPRECISE_COMPUTATION.
Because this file contains related types and procedures, it
is fashioned as a package specification. Its package body
will contain the task and procedure bodies. The package

specification for SYNCHRONOUS_CIRCLE_COMPUTATION includes the

following declarations:

subtype RESULT_TYPRE is float;
subtype ERROR_TYPE is integer;

type INPUT_TYPE is record
LOOPS_TO_COMPLETE : integer;
RADIUS ¢ float;
end record;

task type TEST_TASK is
entry INITIALIZE(INPUT : in INPUT_TYPE);
entry COMPUTE(COMPUTATION_COMPLETE :out boolean);
entry HANDLER(1 .. 2)(LAST_RESULT:in RESULT_TYPE;
LAST_ERROR :in ERROR_TYPE);
entry STOP;
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end TEST_TASK;
type TEST_PTR is access TEST_TASK;

procedure INITIALIZE(THE_TASK
INPUT

in TEST_PTR;
in INPUT_TYPE);

procedure COMPUTE(THE_TASK ¢ in TEST_PTR;
COMPUTATION_COMPLETE :out boolean);

procedure HANDLE(THE_TASK tin TEST_PTR;
HANDLER_NUMBER tin integer;
LAST_VALUE :in RESULT_TYPE;

LAST_ERROR_INDICATOR:in ERROR_TYPE);

procedure STOP(THE_TASK : in TEST_PTR);

The result of the computation will be a £loating point value
representing an estimate of the area of a circle, so
RESULT_TYPE is made a subtype of float. To monitor the
precision of the imprecise result, a counter will count the
number of random coordinate palrs generated. Therefore,
ERROR_TYPE 1s created as a subtype of integer. At initiali-
zation, the computation task will need two pieces of informa-
tion. Represented by the elements in type INPUT_TYPE, this
information is the number of random coordinate pairs to
generate before a precise result is achieved, and the radius
of the circle. The task type TEST_TASK is the computation
task. It includes the necessary entry points to initialize
the task, cause one iteration, handle an imprecise result,
and stop the task. Note that entry HANDLER has been imple-
mented as a family of entries. The type TEST_P"R is a
pointer to task type TEST_TASK. The four procedures

INITIALIZE, COMPUTE, HANDLE, and STOP are required to allow
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the imprecise computation mechanlsm, which has no prior
knowledge of the computation task type, to call specific
entry points within the computation task. Wwhen this package
specification is compiled, it is entered into the user's Ada
library where it can be further referenced.

Now that the required data types, task type, and
procedures have been declared, an instantiation of the
generic package SYNCHRONOUS_IMPRECISE_COMPUTATION can be
made. The declarations in the package specification of
SYNCHRONOUS_CIRCLE_COMPUTATION will be used to create the
package SYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION in the
following manner:

with SYNCHRONOUS_CIRCLE_COMPUTATION;
use SYNCHRONOUS_CIRCLE_COMPUTATION;
with SYNCHRONOUS_IMPRECISE_COMPUTATION;

package SYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION is
new SYNCHRONOUS IMPRECISE_COMPUTATION

(COMPUTATION => TEST_TASK,
COMPUTATION_PTR => TEST_PTR,
RESULT_TYPE 2> RESULT_TYPE,
ERROR_INDICATOR_TYPE => ERROR_TYPE,
INPUT_TYPE => INPUT_TYPE,
INITIALIZE => INITIALIZE,
COMPUTE => COMPUTE,
HANDLE => HANDLE,
STOP => STOP);

When this file is compiled, a new synchronous imprecise
computation package is created that includes the declarations
in SYNCHRONOUS_CIRCLE_COMPUTATION's package specification.
The next file to compose and compile is the package body.

The new imprecise computation package is instantiated before

the computation package body is compiled for a crucial
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reason.

The imprecise computation mechanism employs a circular
calling patternr. Procedure IMPCALL calls procedures that
call entry points of the computation task. 1In the meantime,
the computation task is calling procedure IMPRETURN with
imprecise results and error indicators. Wher the new package
is instantiated after the declarations are made in the
computation package specification, the new IMPCALL lis
supplied with the procedure declarations it needs to get its
job done. The implementation, or body of these procedures is
of no consequence to IMPCALL. After instantiation, a valid
IMPRETURN exists in the new imprecise computation package.
At this point, the computation task body which relies on
IMPRETURN can be coded. 1In this way, a single package can
house the synchronous imprecise computation mechanism, even
though circular calling exists.

The package body for SYNCHRONQUS_CIRCLE_COMPUTATION
contains the following procedure bodies: .

procedure INITIALIZE(THE_TASK : in TEST_PTR;
INPUT ¢ in INPUT_TYPE) |is
begin
THE_TASK.INITIALIZE{INPUT);
end INITIALIZE;
procedure COMPUTE (THE_TASK ¢t In TEST_PTR;
COMPUTATION_COMPLETE : out
boolean) is
begin
THE_TASK . COMPUTE (COMPUTATION_COMPLETE) ;
end COMPUTE;

procedure HANDLE(THE_TASK : in TEST_PTR;
HANDLER_NUMBER : in integer;
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LAST_VALUEB : in RESULT_TYPE;
LAST_BRROR_INDICATOR : in ERROR_TYPE) is
n
THE_TASK . HANDLER ( HANDLER_NUMBER )
(LAST_VALUE,
LAST_ERROR_INDICATOR) ;
HANDLE;

e STOP(THE_TASK : in TEST_PTR) |is

gHB_TASK.STOP;

STOP;

ures call their respective entry points in the
task. Although the procedure names and the entry
exact or similar names, the names are independent

ronous imprecise computation mechanism. The only

ds are the names used to 1nstantiate

SYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION. The task body for

task type TEST_TASK has the following structure:

task bod

begin

y TEST_TASK is

local variable declarations ...

accept INITIALIZE(INPUT : in INPUT_TYPE) do

end
loop

++. initialize variables with input ...
INITIALIZE;

select
accept COMPUTE(COMPUTATION_COMPLETE : out
boolean) do
... generate random coord pairs ...
... check circle boundary ...
... compute area ...
... check if precise,
set COMPUTATION_COMPLETE ...
«+«. IMPRETURN ...
end COMPUTE;
or
accept HANDLER(1) (LAST_RESULT : in
RESULT_TYPE;
LAST_ERROR : in
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ERROR_TYPE) do
... handler #1 code ...
«e. IMPRETURN ...
end HANDLER;

or
accept HANDLER(2)(LAST_RESULT : in
RESULT_TYPE;
LAST_ERROR : in
ERROR_TYPE) do
... handler #2 code ...
.++ IMPRETURN ...
end HANDLER;
or

accept STOP do
FINISHED := true;
end STOP;
end select;
exit when FINISHED;
end loop;
end TEST_TASK;
After initialization, the task continuously loops through a
select statement. The select statement causes the task to
wait for a call to any one of the entry points. The COMPUTE
entry point contains the code that implements the random
sampling of the Monte Carlo method and the area calculation
code. The HANDLER entry family contains the code necessary
to further manipulate the final imprecise result. The loop
is exited by a rendezvous with the STOP entry point. No
other entities are required in the computation package body.
After this package body is compiled and subsequently entered
into the user's Ada library, a self-contalined, operational
synchronous imprecise computation package exists and can be

used. The following VAX Ada program exercises the synchro-

nous package:

with SYNCHRONOUS_CIRCLE_COMPUTATION;
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use SYNCHRONOUS_CIRCLE_COMPUTATION;
with SYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION;
use SYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION;

with CALENDAR; use CALENDAR;
with TEXT_IO; use TEXT_IO;
with FLOAT_TEXT_IO; use FLOAT_TEXT_10;
with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;
procedure SYNCHRONOUS_CIRCLE_TEST is
MY_TASK_PTR : TEST_PTR := new TEST_TASK;
DEAD : CALENDAR.TIME;
RESULT : RESULT_TYPE;
COMP_TIME : float;
MY_INPUT : SYNCHRONOUS_CIRCLE_COMPUTATION.
INPUT_TYPE;
begin

put("Enter the clircle radius => ");
get (MY_INPUT.RADIUS);
put("Enter number of iterations to complete =>");
get (MY_INPUT.LOOPS_TO_COMPLETE);
put("Enter computation duration in seconds =>");
get (COMP_TIME);
put_line("Synchronous CIRCLE TEST starting...");
DEAD := CALENDAR.CLOCK + DURATION(COMP_TIME);
SYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION.
IMPCALL (MY_TASK_PTR,
1,
DEAD,
MY_INPUT,
RESULT);
put("TEST ending... RESULT => ");
put (RESULT, EXP =. 0, AFT => 2);
new_line;
end SYNCHRONOUS_CIRCLE_TEST;

Once the computation package is built and compiled correctly,
using it is quite simple. After the input parameters are
determined, the imprecise computation is run by merely
invoking th= IMPCALL procedure in the newly instantiated
SYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION package. The

complete file listings for this example are located in

Appendix C.




4.1.2 Asynchronous Circle Imprecise Computation

A similar sequence of files is used to build an asyn-

chronous imprecise computation application because the

asynchronous approach also relies on a circular calling

mechanism. The first file constructed contains data types,
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task type, and procedure declarations required for instantia-

tion of generic package ASYNCHRONOUS_IMPRECISE_COMPUTATION.

These declarations are located in the package specification

for ASYNCHRONOUS_CIRCLE_COMPUTATION in the following format:

subtype RESULT_TYPR is float;
subtype ERROR_TYPE 1is integer;

type INPUT_TYPE 18 record
LOOPS_TO_COMPLERTE : integer;
RADIUSB : f£loat;
end record;

task type TEST_TASK is

pragma PRIORITY(O0);

entxry START_COMPUTATION(INPUT : in INPUT_TYPR);
end TEST_TASK;

type TEST PTR is access TEST_TASK;

procedure START_COMPUTATION(THE_TASK :in TEST_PTR;
INPUT :in INPUT_TYPE);

procedure HANDLE(LAST_VALUE : in out
RESULT_TYPE;

LAST_ERROR_INDICATOR : in out
ERROR_TYPE);

The subtypes RESULT_TYPE, ERROR_TYPE, and INPUT_TYPE are the

same as in the synchronous example. However, the task type

TEST_TASK is quite different. The task must contain the

priority pragma statement with a prlority lower than that of
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the TIMER task in ASYNCHRONOUS_IMPRECISE_COMPUTATION. Task
type TEST_TASK contains a single entry point where the task
is initialized and then turned loose. The type TEST_PTR
remains as an access type pointing to TEST_TASK. The
procedure START_COMPUTATION {s required to allow the asyn-
chronous imprecise computation mechanism, which has no
knowledge of the internal structure of the computation task,
to indirectly call the START_COMPUTATION entry point. The
procedure HANDLE is not affiliated with the computation task
as it is in the synchronous version, but accomplishes the
same function of manipulating the final imprecise result.

The compiled ASYNCHRONOUS_CIRCLE_COMPUTATION package specifi-
cation is entered into the user's Ada library where it can be
further referenced by the application.

Once the required data types, task type, and procedures
have been declared, a new package can be created by instanti-
ating the generic package ASYNCHRONOUS_IMPRECISE_COMPUTATION.
This is accomplished in the following file:

with ASYNCHRONQUS_CIRCLE_COMPUTATION;
use ASYNCHRONOUS_CIRCLE_COMPUTATION;
with ASYNCHRONOUS_IMPRECISE_COMPUTATION;

package ASYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION is
new ASYNCHRONOUS_IMPRECISE_COMPUTATION

(COMPUTATION => TEST_TASK,
COMPUTATION_PTR => TEST_PTR,
RESULT_TYPE => RESULT_TYPE,
ERROR_INDICATOR_TYPE => ERROR_TYPE,
INPUT_TYPE => INPUT_TYPE,
START_COMPUTATION => START_COMPUTATION,
HANDLE => HANDLE);

Vhen this file is compiled, a new asynchronous imprecise
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computation package is created. This new package contains
the declarations from the package specification of
ASYNCHRONOUS_CIRCLE_COMPUTATION substituted in for the
generic parameters. The next step is to implement the body
of the computation package.

The package body of ASYNCHRONOUS_CIRCLE_COMPUTATION

contains the following procedure bodies:

procedure START_COMPUTATION(THE_TASK : in TEST_PTR;
INPUT ¢ in INPUT_TYPE) |is
begin
THE_TASK .START_COMPUTATION (INPUT);
end START_COMPUTATION;

procedure HANDLE(LAST_VALUE : in out
RESULT_TYPE;
LAST_ERROR_INDICATOR : in out

ERROR_TYPE) is
begin
«+. handler routine ...

end HANDLE;
Procedure START_COMPUTATION merely calls THE_TASK at the
START_COMPUTATION entry point. During the rendezvous, the
initialization INPUT is passed to the compute task. Pro-
cedure HANDLE is a standalone procedure that manipulates the
final imprecise result. Also included in the computation
package body is the body of task type TEST_TASK. It has the

following structure:

task body TEST_TASK is
«»s local variable declarations ...

begin
accept START_COMPUTATION(INPUT :in INPUT_TYPE) do
«v. initialize local variables ...
end START_COMPUTATION;
delay DURATION'SMALL;
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loop

... generate random coordinate pairs ...

... test boundary of circle ...

.+s COmpute area ...

... check if precise, set FINISHED ...

®* o & INPRBTURN L B

exit when FINISHED;

end loop;
end TEST_TASK;

The purpose of the delay statement with the minimal amount of
delay is to allow the TIMER task to regain immediarLe control
of the processor after the rendezvous with TEST_TASK. The
delay statement causes TEST_TASK to be blocked and allows the
higher priority TIMER task to execute. After the TIMER task
determines its delay amount and suspends itself, the task
TEST_TASK regains control of the processor and proceeds with
the computation. The TEST_TASK loop is not exited until it
achieves a precise result or is signalled to exit via the
IMPRETURN call. No other entities are required in the
computation package body. After this package is compiled and
entered into the user's library, a fully operational asyn-
chronous imprecise computation mechanism is avallable by
referencing ASYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION. This
new package is used in the following VAX Ada procedure:

with ASYNCHRONOUS_CIRCLE_COMPUTATION;
use ASYNCHRONOUS_CIRCLE_COMPUTATION;

with ASYNCHRONOUS_CIRCLB—INPRECISB_COHPUTATION;
use ASYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION;

with CALENDAR; use CALENDAR;

with TEXT_I0; use TEXT_IO;

with FLOAT_TEXT_I10; use FLOAT_TEXT_IO;
with INTEGER_TEXT_IO; use INTEGER_TEXT_10;

procedure ASYNCHRONOUS_CIRCLE_TEST |is




54

pragma TIME_SLICE(0.01);

MY_TASK_PTR : TEST_PTR := new TEST_TASK;
DEAD ¢ CALENDAR.TIME;
RESULT ¢ RESULT_TYPE;
COMP_TIME : float;
MY_INPUT ¢ ASYNCHRONOUS_CIRCLE_COMPUTATION.
INPUT_TYPE;
begin

put("Enter the circle radius => ");
get (MY_INPUT.RADIUS);
put ("Enter number of iterations to complete =>");
get (MY_INPUT.LOOPS_TO_COMPLETE);
put ("Enter computation duration in seconds => ");
get (COMP_TIME);
put_line("Asynchronous CIRCLE TEST starting...");
DEAD := CALENDAR.CLOCK + DURATION(COMP_TIME);
ASYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION.
IMPCALL (MY_TASK_PTR,
DEAD,
MY_INPUT,
RESULT);
put ("CIRCLE TEST ending...CIRCLE AREA RESULT=>");
put (RESULT, EXP => 0, AFT => 2); new_line;
end ASYNCHRONOUS_CIRCLE_TEST;

Like its synchronous version, the asynchronous imprecise
computation package is quite easy to use. Once compiled
correctly, it can be accessed by simply invoking IMPCALL with
the necessary parameters. A complete listing of the example
files for asynchronously computing the area of a circle can

be found in Appendix D.

4.2 Iterative Numerical Methods

Iterative numerical methods involve the repeated
application of an operator. These methods include Newton's
method (nonlinear equations), the Jacobi method (linear
equations), and the Newton divided-difference method (infi-

nite series approximation) among others (15,16]). This
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example demonstrates another use of the synchronous and
asynchronous approaches in implementing an imprecise computa-
tion application. SYNCHRONOUS_IMPRECISE_COMPUTATION and
ASYNCHRONOUS_IMPRECISE_COMPUTATION are generic packages used
to implement a synchronous and an asynchronous linear systea

of equations solver that utilizes the Jacobl method.

4.2.1 8Synchronous Jacobi Imprecise Computation

The sequence of file generation and compilation is
identical to the previous example. The first file generated
is the package specification. This file contains the data
types, taak type, and procedure declarations that will be
used to 1ns£antiate a custom synchronous imprecise computa-
tion package. The following declarations are used for the
Jacobi method:

N : constant integer := 3;

type RESULT_TYPE is array(l .. N) of float;

subtype ERROR_TYPE is integer;

type COEFFICIENT_TYPE is array(l .. N, 1 .. N) of £loat;

type INPUT_TYPE is record

COEFFICIENTS ¢ COEFFICIENT_TYPE;
RIGHT_HAND_SIDE : RESULT_TYPE;

XOLD ¢ RESULT_TYPE;

TOL : float;

end record;

task type TEST_TASK |is
entry INITIALIZE(INPUT : in INPUT_TYPE);
entry COMPUTE(COMPUTATION_COMPLETE :out boolean);
entry HANDLER(1 .. 2)(LAST_RESULT:in RESULT_TYPE;
LAST_ERROR :in ERROR_TYPE);
entry STOP;
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end TEST_TASK;
type TEST_PTR is access TEST_TASK;

procedure INITIALIZE(THE_TASK
INPUT

in TEST_PTR;
in INPUT_TYPE);

procedure COMPUTE(THE_TASK
COMPUTATION_COMPLETE

in TEST_PTR;
out boolean);

e oo

procedure HANDLE(THE_TASK : in TEST_PTR;
HANDLER_NUMBER ¢t in integer;
LAST_VALUE ¢ in RESULT_TYPE;
LAST_ERROR_INDICATOR : in ERROR_TYPE);

procedure STOP(THE_TASK : in TEST_PTR);

The integer constant N represents the number of equations in
the linear system. Likewise, N also represents the number of
coefficients in each equation. The type RESULT_TYPE indi-
cates that a solution vector with N floating point components
will be the result of the computation. The subtype
ERROR_TYPE is defined as an integer, for the error will be
represented by an integer counter indicating the number of
lterations accomplished. The type COEFFICIENT_TYPE defines
an N by N matrix of floating point values. This type is not
directly used in instantiation, but is used in the definition
of the input to the computation. Type INPUT_TYPE is a record
type containing 4 fields. The field COEFFICIENTS is an N by
N matrix containing the coefficients of the equations in the
linear system. The right hand side of these equations is
stored in the field RIGHT_HAND_SIDE. The field XOLD contains
an initial guess at the solution vector. This gives the

Jacobi method a place to start. The field TOL is the
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tolerance used to determine whether a new solution vector,
when compared to the previous one, can be considered a
precise result. The task type TEST_TASK contains the
appropriate entry calls required by the synchronous imprecise
computation mechanism to initialize the task, cause an
iteration of the computation, handle an imprecise result, and
stop the task. A pointer type to this task type is defined
as type TEST_PTR. Finally, the procedures INITIALIZE,
COMPUTE, HANDLE, and STOP are declared so that the synchro-
nous imprecise computation nechanisﬁ, wvhen instantiated with
these declarations, can call the entry points of a task.
These procedures are necessary because the synchronous
wmechanism has no prior knowledge of the task TEST_TASK or its
structure. Cnce this package specification is compiled, it
is entered into the user's Ada library where it can be
further referenced by the application.

With the data types, task type, and procedures declared
in the package specification, an instantiation of the generic
package SYNCHRONOUS_IMPRECISE_COMPUTATION can be made. The
declarations in the SYNCHRONOUS_JACOBI_COMPUTATION package
specification are used to create the new package
SYNCHRONOUS_JACOBI_IMPRECISE_COMPUTATION in the following
way:

with SYNCHRONOUS_JACOBI_COMPUTATION;
use SYNCHRONOUS_JACOBI_COMPUTATION;
with SYNCHRONOUS_IMPRECISE_COMPUTATION;

package SYNCHRONOUS_JACOBI_IMPRECISE_COMPUTATION |is
new SYNCHRONOUS_IMPRECISE_COMPUTATION




58

(COMPUTATION => TEST_TASK,
COMPUTATION_PTR => TEST_PTR,
RESULT_TYPE => RESULT_TYPE,
ERROR_INDICATOR_TYPE => ERROR_TYPE,
INPUT_TYPE => INPUT_TYPE,
INITIALIZE => INITIALIZE,
COMPUTE => COMPUTE,
HANDLE => HANDLE,

sTOP => STOP);

After this file is compiled, a new synchronous imprecise
computation package exists in the user's library. This new
package contains the same mechanism, but with the new
declarations substituted in for the generic parameters. The
next file defines the bodies for the task type and the
procedures declared in the package specification.

The package body of SYNCHRONOUS_JACOBI_COMPUTATION
contains the implementation details of the task type and
procedure bodies. The procedure bodies are implemented in
the following way:

procedure INITIALIZE(THE_TASK : in TEST PTR;
INPUT ¢t in INPUT_TYPR) is
begin
THE_TASK.INITIALIZE(INPUT);
end INITIALIZE;

procedure COMPUTE(THE_TASK
COMPUTATION_COMPLETE

: in TEST_PTR;
¢ out boolean) is
begin

THE_TASK . COMPUTE (COMPUTATION_COMPLETE) ;

end COMPUTE;

procedure HANDLE(THE_TASK tin TEST_PTR;
HANDLER _NUMBER :in integer;
LAST_VALUE :in RESULT_TYPE;
LAST_ERROR_INDICATOR:in ERROR_TYPE) is

begin
THE_TASK . HANDLER (HANDLER_NUMBER)
(LAST_VALUE, LAST_ERROR_INDICATOR);
end HANDLE;
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procedure STOP(THE_TASK : in TEST_PTR) |is

begin

THE_TASK.STOP;
end STOP;

These procedures call their respective entry points in the

Jacobi computation task. The procedures and entry points can

have any names.

The only requirement is that the procedures

used to instantiate the new synchronous imprecise computation

package call the appropriate entry point in the Jacobi

computation task. The task body for task type TEST_TASK has

the following structure:

task body TEST_TASK is

«++ local varlable declarations ...

begin

accept INITIALIZE(INPUT : in INPUT_TYPE) do

initialize local variables with input ...
normalize coefficient matrix ...

end INITIALIZE;

loop

select

or

or

accept COMPUTE (COMPUTATION_COMPLETE :
out boolean) do
«+. compute new solution vector
using method in {15,16]) ...
... £ind absolute difference
between 0ld and new elements..
... let present estimate be
improved estimate ...
... report current result
with IMPRETURN ...
end COMPUTE;

accept HANDLER(1)
(LAST_RESULT : in RESULT_TYPE;
LAST_ERROR : in BERROR_TYPE) do
s+ handler #1 code ...
+s+ IMPRETURN ...
end HANDLER;

accept HANDLER(2)
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(LAST_RESULT in RESULT_TYPE;
LAST_ERROR in ERROR_TYPE) do
«++ handler #2 code ...
.+« IMPRETURN ...
end HANDLER;
or
accept STOP do
PINISHED := true;
end STOP;
end select;
exit when FINISHED;
end loop;
end TEST_TASK;

During initialization, the values of the input record are
copled to local variables. The input record fields cannot be
used directly in the computation task because their scope is
limited to the INITIALIZE rendezvous. The coefficient matrix
is then normalized and the rendezvous is complete. The task
then enters a loop that contains a select and an exit
statement. The task waits for an entry call, performs the
operation in the rendezvous, and then checks if it should
exit the loop. The COMPUTE entry point contains the imple-
mentation of the Jacobl method as specified in (15,16]. The
HANDLER entry family contains the code necessary to further
manipulate the final imprecise result. The STOP entry point
sets the flag that triggers the loop exit. No other entities
are required in the SYNCHRONOUS_JACOBI_COMPUTATION package
body. After this package body is compiled and entered into
the user's Ada library, a self-contained synchronous impre-
cilse Jacobi computation mechanism exists. Real-time programs
in need of an imprecise Jacobli computation package can call

SYNCHRONOUS_JACOBI_IMPRECISE_COMPUTATION 1in the following




o <-ah Y B ¢ N @ N g U SR By W B Uk W B ¥ 2

mannher:

with
use

with
use

with
with
with
with
proc

begi

end
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SYNCHRONOUS_JACOBI_COMPUTATION;
SYNCHRONOUS_JACOBI _COMPUTATION;
SYNCHRONOUS_JACOBI _IMPRECISE_COMPUTATION;
SYNCHRONOUS_JACOBI_IMPRECISE_COMPUTATION;

CALENDAR; use CALENDAR;
TBXT_I10; use TEXT_l10;
FLOAT_TEXT_IO; use FPLOAT_TBXT_IO;
INTEGER_TERXT_I0O; use INTEGER_TBXT_IO;
edure SYNCHRONOUS_JACOBI_TERST is
MY_TASK_PTR : TEST_PTR := new TEST_TASK;
DEAD : CALENDAR.TINME;
RESULT : RESULT_TYPRE;
COMP_TIME : PFLOAT;
INPUT : INPUT_TYPE;
n

for INDEX in 1 .. N loop
put_line("Enter the coefficients and " &
"right hand side for equation " &
integer'image(INDEX));
tor NUM_COEFF in 1 .. N loop
get (INPUT.COEFFICIENTS(INDRX, NUM_COEFF) ) ;
end loop;
get (INPUT.RIGHT_HAND_SIDE(INDEX));
end loop;
for INDEX in 1 .. N loop
INPUT.XOLD(INDEX) := 0.0;
end loop;
put("Bnter tolerance factor => ");
get (INPUT.TOL);
put("Enter the computation durationisecs.) => ");
get (COMP_TIME);
put_line("Synchronous Jacobi test starting...");
DEAD := CALENDAR.CLOCK + DURATION(COMP_TIME);
SYNCHRONOUS_JACOBI_IMPRECISE_COMPUTATION.
IMPCALL (MY_TASK_PTR,
1,
DEAD,
INPUT,
RESULT);
put_line("Jacobi TEST ending... ");
for INDEX in 1 .. N loop
put("X"); put(INDEX,WIDTH => 1); put("” => %);
put (RESULT(INDEX), EXP => 0);
nevw_line;
end loop;
SYNCHRONOUS_JACOBI_TEST;

]
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After the synchronous imprecise Jacobli computation mechanism
is built, using it is quite simple. After the input vari-
ables are determined, a single IMPCALL runs the entire
imprecise computation. The complete file listings for this
example, including the implementation of the Jacobi method,

are located in Appendix RE.

4.2.2 Asynchronous Jacobi Imprecise Computation
The sequence of files is again the same because of the
circular calling mechanism employed. The package specifi-

cation for the asynchronous computation looks like this:

N : constant integer := 3;

type RESULT_TYPE is array (1 .. N) of float;

subtype ERROR_TYPE is integer;

type COBFFICIENT _TYPE is array(l .. N, 1 .. N) of float;
type INPUT_TYPE is record

COERFFICIENTS : COEFFICIENT_TYPE;
RIGHT_HAND_SIDE : RESULT_TYPE;

XOLD ¢ RESULT_TYPE;

TOL : float;

end record;

task type TEST_TASK is

pragma PRIORITY(0);

entry START_COMPUTATION(INPUT : in INPUT_TYPE);
end TEST_TASK;

type TEST_PTR is access TEST_TASK;

procedure START_COMPUTATION(THE_TASK : in TEBST_PTR;
INPUT : in INPUT_TYPE);

procedure HANDLE(LAST_VALUE ¢ in out
RESULT_TYPE;

LAST_ERROR_INDICATOR : in out
ERROR_TYPE);
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The integer constant N represents the number of equations in
the linear system. The type RESULT_TYPB represents the form
of the final result which will be a solution vector with N
elements. Type EBRROR_TYPER will again be an integer count of
the number of iterations. The type CORFPICIENT_TYPE will not
be used directly for instantiation, but represents an N by N
matrix of coefficients. The type INPUT_TYPRE is the same as
the synchronous input. The coefficient matrix COBFFICIEBNTS,
the values to the right of the equal operator
RIGHT_HAND_SIDE, the initial solution guess XOLD, and the
tolerance TOL are passed to the computation task at initiali-
zation. The specification of task type TEST_TASK contains
the compiler directive to give a task object of this task
type the lowest possible priority. This allows the asynchro-
nous imprecise computation mechanism, operating at the
highest priority, to gain control of the processor. Task
type TEST_TASK also contains a single entry call,
START_COMPUTATION. The procedure START_COMPUTATION is needed
to rendezvous with the computation task and initialize it.
The procedure HANDLE is a standalone procedure that manipu-
lates the final, iwmprecise result.

Again, once the asynchronous computation package
specification is compiled and entered into the user's
library, an instantiation of the generic package
ASYNCHRONQUS _IMPRECISE_COMPUTATION can be made using the

declarations from the newly constru. .«d package specifl-
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cation. This is accomplished in the following way:

with ASYNCHRONOUS_JACOBI_COMPUTATION;

use ASYNCHRONOUS_JACOBI_COMPUTATION;

with ASYNCHRONOUS_IMPRECISE_COMPUTATION;

package ASYNCHRONOUS_JACOBI_IMPRECISE_COMPUTATION is
new ASYNCHRONOUS_IMPRECISE_COMPUTATION

(COMPUTATION => TEST_TASK,
COMPUTATION_PTR => TEST_PTR,
RESULT_TYPE => RESULT_TYPE,
ERROR_INDICATOR_TYPE => ERROR_TYPE,
INPUT_TYPE 2> INPUT_TYPE,
START_COMPUTATION => START_COMPUTATION,
HANDLE => HANDLE);

The package ASYNCHRONOUS_JACOBI_IMPRECISE_COMPUTATION is
created from the generic template, substituting the new
declarations for the generic parameters. This new package
contains valid IMPCALL and IMPRETURN procedures, the latter
needed by the computation task to return imprecise results.
At this point, the computation package body containing the
procedure bodies and task type body is constructed.

The package body of ASYNCHRONOUS_JACOBI_COMPUTATION

contains the following procedure bodies:

procedure START_COMPUTATION(THE_TASK : in TEST_PTR;
INPUT ¢ in INPUT_TYPE) is
begin
THE_TASK.START_COMPUTATION(INPUT);
end START_COMPUTATION;

procedure HANDLE(LAST_VALUE : in out
RESULT_TYPE;
LAST_ERROR_INDICATOR : in out
ERROR_TYPE) is
begin
put_line("HANDLE called ...");
put ("Computation looped ");
put (LAST_ERROR_INDICATOR);
put_line(" times.");
end HANDLE;
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The procedure START_COMPUTATION merely calls the entry point
START_COMPUTATION in THE_TASK. During the rendezvous,
parameter INPUT is used to initialize the computation task.
Procedure HANDLE, in this example, merely displays the number
of iterations the computation completed. Additional state-
ments could be included to manipulate the imprecise result
based on this number. The computation package body also
contains the body of task type TEST_TASK:

task body TEST_TASK s
..+ local variable declarations ...

begin
accept START_COMPUTATION(INPUT:in INPUT_TYPE) do
«+s ilnitialize local variables with input...
end START_COMPUTATION;
delay duration'small;
... NOrmalize matrix ...
loop
+ss iterate improvement until required
accuracy is achieved ...
... compute new solution vector
using method in (15,16) ...
... £find absolute difference
between 0ld and new elements..
... let present estimate be
improved estimate ...
... set finished flag if within accuracy ...
... report current result
with IMPRETURN ...
exit when PINISHED;
end loop;

exception
when NUMERIC_ERROR =>
put_line("NUMERIC ERROR... " &
"Diverging solution.");
end TEST_TASK;

During the START_COMPUTATION rendezvous, local variables are

assigned the values of INPUT fields. The task then delays
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the smallest possible amount of time. This delay allows task
TIMER to determine its initial delay amount and then delay
itself. After the coefficient matrix is normalized, the task
enters a loop. This loop contains the Jacobi algorithm as
specified in [15,16). If the required accuracy is achieved,
the FINISHED flag will be set. An IMPRETURN call returns the
current imprecise result, error indicator, and state of the
FINISHED flag. If FINISHED is set, the loop is exited and
the task completes. Appropriate exception handlers are set
up as required by the particular computation. With the
ASYNCHRONOUS_JACOBI_COMPUTATION package body compiled and in
the user's library, the following VAX Ada procedure can use
the imprecise Jacobi computation mechanism:

with ASYNCHRONOUS_JACOBI_COMPUTATION;

use ASYNCHRONOUS_JACOBI_COMPUTATION;

with ASYNCHRONOUS_JACOBI IMPRECISE_COMPUTATION;
use ASYNCHRONOUS_JACOBI_IMPRECISE_COMPUTATION;

with CALENDAR; use CALENDAR;

with TEXT_I0; use TEXT_IO;

with FLOAT_TEXT_I10; use FLOAT_TEXT_10;
with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;

procedure ASYNCHRONOUS_JACOBI_TEST |is

pragma TIME_SLICE(0.01);

MY_TASK_PTR : TEST_PTR := new TEST_TASK;
DEAD : CALENDAR.TIME;
RESULT ¢ RESULT_TYPB;
COMP_TIME : PFLOAT;
INPUT ¢ INPUT_TYPE;
begin

for INDEX in 1 .. N loop
put_line("Enter the coefficlents and " &
"right hand side for equation " &
integer'image(INDEX));
for NUM_COBFF in 1 .. N loop
get (INPUT.COEFFICIENTS (INDEX, NUM_COEFF) ) ;
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end loop;
get (INPUT.RIGHT_HAND_SIDE(INDEX));
end loop;
for INDEX in 1 .. N loop
INPUT.XOLD(INDEX) := 0.0;
end loop;
put ("Enter tolerance factor => ");
get (INPUT.TOL);
put("Enter the computation duration(secs) => ");
get (COMP_TIME);
put_line("Asynchronous Jacobi test starting...");
DEAD := CALENDAR.CLOCK + DURATION(COMP_TIME);
ASYNCHRONOQUS_JACOBI_IMPRECISE_COMPUTATION.
IMPCALL (MY_TASK_PTR,
DEAD,
INPUT,
RESULT);
put_line("Jacobl TEST ending... ");
for INDEX in 1 .. N loop
put(”X"); put(INDEX,WIDTH => 1); put(® => ");
put (RESULT(INDEX), EXP => 0);
nevw_line;
end loop;
end ASYNCHRONOUS_JACOBI_TEST;

After the input variables are given their appropriate values,
the imprecise computation is run by merely calling IMPCALL
and passing it the necessary parameters. When the computa-
tion completes, the final result is passed back in the
parameter RESULT and IMPCALL terminates. A complete listing

of the files for this asynchronous Jacobl example can be

found in Appendix F.

4.3 Running the Examples

All of the preceding examples were compiled and run on a
VAX-11/780 at the 83rd Fighter Weapons Squadron's Range
Support Facility (RSF), Tyndall Air Force Base, Florida. The

RSF VAX runs the VM8 operating system and uses the DEC Ada
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compiler. All test files compiled and linked correctly. The
example tests were run at a real-time priority, giving them
privilege over system processes such as the swapper and all
other user processes. The results of these tests are
summarized in Tables 2 through 5. BEach table contains the
duration of the imprecise computation (TIME), the number of
iterations completed (ITERATIONS COMPLETED), and the amount
of time the computation took past its deadline (PAST DEAD-
LINE).

As expected, the asynchronous approach proved much
faster, almost by an order of magnitude, than the synchronous
approach in the circle test. This algorithm involves a
short, simple loop that must be repeated 10000 times to
produce a result considered precise. 1In this example, the
synchronous approach yielded more consistent and lower
deadline expiration times. This is expected because the
synchronous approach maintains total control over the
computation loop. In the Jacobi test, solving a linear
system of three equations with three unknowns required only
15 iterations. This example represents the other side of the
iteration spectrum as compared to the circle test's 10000
iterations. 1In addition to the synchronous approach main-
taining its lower and consistent deadline expiration times,
it also produced a precise result ahead of the asynchronous

approach.
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LIERATIONS COMPLRTED  RAST DEARLINE(sec)

IIME

0.01 0

0.05 1830

0.10 4080

0.15 5540

0.20 8510

0.25 10000 (complete)

Table 2.

IIME  ITERATIONS COMPLETED  BAST DEARLINE(sec)

0.10
0.25
0.50
1.00
2.00
2.50
3.00
3.50

IIME  IIERATIONS COMPLETED  RAST DEARLINE(sec)

Table 3.

290
730
1510
3040
6300
7470
8880
10000 (complete)

0.022 0

0.023 0

0.024 0

0.025 15 (complete)
Table 4.

1.00098E-02
1.00098E-02
1.00098E-02
0.00000E+00
0.00000E+00

Asynchronous Circle Test Results

0.00000E+00
9.99500E-03
9.99500E-03
9.99500E-03
9.99500E-03
9.99500E-03
9.99500E-03

Synchronous Circle Test Results

7.9956E-03
7.0190E-03
5.9814E-03

Asynchronous Jacobi Test Results
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IIME = LIERATIONS COMPLRTED  PRAST DEADLINE(sec)

0.0010 1 8.97000E-03
0.0050 3 5.00000E-03
0.0075 4 2.50000E-03
0.0085 4 1.46000E-03
0.0100 15 (complete) -

Table 5. Synchronous Jacobi Test Results

The circle and Jacobi imprecise computation examples are
indicative of real-time applications. The results of these
examples show the relative merits of both the synchronous and

asynchronous approaches,
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S5 Analysis and Conclusion
5.1 Analysis of the Test Results

In analyzing the results of the circle and Jacobli
imprecise computation tests, several key observations can be
made. First and foremost, the synchronous and asynchronous
approaches have been implemented and shown to be feasible.
Both approaches have demonstrated their consistent behavior
within these example tests. 8econd, it is apparent that the
approach used for a particular application should depend on
the nature of the computation involved. The asynchronous
approach demonstrated its capability to outdistance the
synchronous approach in the simple, short, highly repetitive
computation loop of the Monte Cario circle test. On the
other hand, the synchronous approach was able to achieve a
precise result four times faster than the asynchronous
approach in the computation-intensive loop of the Jacobi
test. Finally, respectable deadline expiration times were
turned in without either the synchronous or asynchronous
approaches employing any deadline checking heuristic algo-
rithms. For example, the synchronous mechanism could
maintain a running average of the execution time of each
itexation. This average time could then be used in deciding
whether or not another iteration should be triggered.
Another possible enhancement 1s changing the division factor
of the calculated delay time in the asynchronous approach.

Altering this constant can help compensate for é lagging




72

run-time systen.

The results turned in by the RSF VAX will undoubtedly
vary between dissimilar systems. The more a run-time system
is geared for real-time performance the better the results
will be. Conversely, the less a run-time system is geared
for real-time performance the worse the results will be. The
same circle and Jacobi tests run on a VADS machine produced
totally unreliable results. It was not uncommon to observe
deadline past times of one or two seconds! These observa-

tions added to the list of lessons learned in this project.

5.2 Lessons Learned

Through the course of this research effort, several
problems related to the Ada programming language and its
run-time environment were identified. First, the rendezvous
is too costly in terms of execution time. The rendezvous has
been shown to require fifty times the execution time of a
procedure call [7]). This is the one major drawback to the
synchronous approach to imprecise computations. The asyn-
chronous approach identified more severe and less deter-
ministic problems.

Although the Ada tasking model is priority driven, it is
not preemptive. For this reason, priority inversion can
occur and render the priority system useless. 1In the context
of the Monte Carlo circle example, when the higher priority

TIMER task becomes ready to run after its prescribed delay
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amount, it should not have to walt while the lower priority
compute task continues to execute. 1In this environment,
deadlines can be missed by staggering amounts of time. Time
slices can be used to compensate for this problem.

An Ada run-time system should allow the user to specify
the time slice, or the amount of time a given task can hold
onto the processor. VAX Ada provides the non-standard pragma
TIME_SLICE. The documentation (8] suggests a minimum value
of 0.01 seconds. The VADS implementation is hard-wired to an
unrealistic one second [(24). Running the asynchronous
imprecise computation tests on both systems demonstrated that
a VAX Ada implementation can achieve consistent deadline past
times while those achieved by the VADS implementation were
unruly and totally unacceptable. The bottom line is the
lower the time slice, the less priority inversion effects the
computation.

The final problem area is the sense of time in Ada. The
delay statement only gives a minimum delay. When this
problem is coupled with large time slices and an environment
fostering priority inversion, delays can be observed orders
of magnitude greater than the requested delay. The VAX Ada
asynchronous imprecise computation results show acceptable,
consistent results. With the time slice capablility, maximum
delay can be kept in check.

These problems areas do not spell the death of Ada, nor

the death of any project implemented in Ada. The synchronous
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and asynchronous approaches to imprecise computation have
been implemented despite these drawbacks. The problems are
not insurmountable. Rather, they form an agenda for the

evolution of the Ada programming language.

5.3 Conclusion

The goal of this research effort was to investigate all
possible approaches to implementing imprecise computations in
Ada. Two approaches emerged out of a central idea. The
synchronous and asynchronous versions of the atomic computa-
tion loop approach were distinguished because of early timing
concerns regarding the rendezvous. Both versions were
implemented in standard Ada code. Each version was demon-
strated using the Monte Carlo circle example and the Jacobi
example. Each example was painstakingly constructed in a
straightforward manner. These examples illustrated that the
synchronous and asynchronous approaches were better suited
for different imprecise computation applications. But more
importantly, the examples showed that implementing imprecise

computations in Ada is entirely possible.
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with CALENDAR;
generic
-- the task type --
type COMPUTATION is limited private;

-- the pointer type to the task type --
type COMPUTATION_PTR is access COMPUTATION;

-- the result type of the computation --
type RESULT_TYPE is private;

-- the error indicator type --
type ERROR_INDICATOR_TYPE is private;

-- the input argument type ~-
type INPUT_TYPE is private;

-- procedure to initialize the compute task --
with procedure INITIALIZE(THE_COMPUTATION : in
COMPUTATICN_PTR;
INPUT : in
INPUT_TYPE);

-- procedure to call a rendezvous with compute loop --
with procedure COMPUTE(THE_COMPUTATION : in
COMPUTATION_PTR;
COMPUTATION_COMPLETE : out
boolean);

-- procedure to call a rendezvous with a handler --
with procedure HANDLE(THE_COMPUTATION ¢ in
COMPUTATION_PTR;
HANDLER_NUMBER t in
integer;
LAST_VALUE : in
RESULT_TYPE;
LAST_ERROR_INDICATOR : in
ERROR_INDICATOR_TYPE);

-- procedure to stop the compute task --
with procedure STOP(THE_COMPUTATION : in
COMPUTATION_PTR);

package SYNCHRONOUS_IMPRECISE_COMPUTATION |is
procedure IMPCALL(THE_COMPUTATION in out
COMPUTATION_PTR;

in integer;

in CALENDAR.TIME;

in INPUT_TYPE;

out RESULT_TYPE);

THE_HANDLER
DEADLINE
INPUT
PINAL_RESULT
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procedure IMPRETURN(INTERMEDIATE_RESULT : in

ERROR_INDICATOR

end SYNCHRONOUS _IMPRECISE_COMPUTATION;

RESULT_TYPE;
: in
ERROR_INDICATOR_TYPE);
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with TEXT_IO; use TEXT_IO;
with FLOAT_TEXT_IO0; use FLOAT_TEXT_IO;
package body SYNCHRONOUS_IMPRECISE_COMPUTATION is

CURRENT_VALUE : RESULT_TYPE;

CURRENT_ERROR_INDICATOR : ERROR_INDICATOR_TYPE;

procedure IMPCALL(THE_COMPUTATION in out
COMPUTATION_PTR;

in integer;

in CALENDAR.TIME;

in INPUT_TYPE;

out RESULT_TYPE) is

THE_HANDLER
DEADLINE
INPUT
PINAL_RESULT

COMPUTATION_COMPLETED : boolean;
TIME_HACK s CALENDAR.TIME;

begin
INITIALIZE(THE_COMPUTATICON, INPUT);
loop
COMPUTE (THE_COMPUTATION,
COMPUTATION_COMPLETED);
exit when COMPUTATION_COMPLETED;
TIME_HACK := CALENDAR.CLOCK;

1f CALENDAR.">"(TIME_HACK, DEADLINE) then
put(®deadline expired by ");
put(float(calendar."-"(TIME_HACK,
deadline)), exp=>0);
put_line("secs. Calling handler...");
HANDLE (THE_COMPUTATION,
THE_HANDLER,
CURRENT_VALUE,
CURRENT_ERROR_INDICATOR);
exit;
end {f;
end loop;
8TOP (THE_COMPUTATION);
FINAL_RESULT := CURRENT_VALUE;
end IMPCALL;

procedure IMPRETURN(INTERMEDIATE_RESULT : in
RESULT_TYPE;
ERROR_INDICATOR ¢ in
ERROR_INDICATOR_TYPE) |is

begin
CURRENT_VALUE := INTERMEDIATE_RESULT;
CURRENT_ERROR_INDICATOR := ERROR_INDICATOR;

end IMPRETURN;

end SYNCHRONOUS_IMPRECISE_COMPUTATION;
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with CALENDAR;
generic
-- the task type --
type COMPUTATION is limited private;

-- the pointer type to the task type --
type COMPUTATION_PTR is access COMPUTATION;

== the result type of the computation --
type RESULT_TYPE is private;

-~ the error indicator type --
type ERROR_INDICATOR_TYPE is private;

-- the input argument type --
type INPUT_TYPE is private;

~- procedure to start compute loop --
with procedure START_COMPUTATION(THE_COMPUTATION : in
COMPUTATION_PTR;
INPUT ¢ in
INPUT_TYPE);

-- procedure tec call a handler ~--
with procedure HANDLE(LAST_ VALUE : in out
RESULT_TYPE;
LAST_ERROR_INDICATOR : in out
ERROR_INDICATOR_TYPE);

package ASYNCHRONOUS_IMPRECISE_COMPUTATION is

procedure IMPCALL(THE_COMPUTATION : in out
COMPUTATION_PTR;
DEADLINE : in CALENDAR.TIME;
INPUT ¢ in INPUT_TYPE;
FINAL_RESULT ¢ out RESULT_TYPE);

procedure IMPRETURN(INTERMEDIATE_RESULT : in
RESULT_TYPE;

ERROR_INDICATOR : in
ERROR_INDICATOR_TYPE;

STOP_FLAG : in out
boolean);

end ASYNCHRONOUS_IMPRECISE_COMPUTATION;




with TEXT_I0;

use TEXT_I0;

with FLOAT_TEXT_IO; use FLOAT_TEXT_IO;
package body ASYNCHRONOUS_IMPRECISE_COMPUTATION is

CURRENT_VALUE

RESULT_TYPE;

CURRENT_ERROR_INDICATOR : ERROR_INDICATOR_TYPE;

STOP_COMPUTATION_FLAG

boolean := FALSE;

task TIMER is
pragma PRIORITY(7);

entry RUN_JOB(THE_JOB

in out COMPUTATION_PTR;

INPUT ¢ in INPUT_TYPE;
DEADLINE : in CALENDAR.TIME);
end TIMER;
task body TIMER is
COMPUTATION_COMPLETED : boolean;
TIME_HACK : CALENDAR.TIME;
TIME_LEFT : float;
DELAY_TIME ¢ DURATION;
HACK1, HACK2 ¢ CALENDAR.TIME;
begin

accept RUN_JOB(THE_JOB

in out COMPUTATION_PTR;
in INPUT_TYPE;
in CALENDAR.TIME) do

INPUT
DEADLINE

START_COMPUTATION(THE_JOB, INPUT);
loop

TIME_HACK := CALENDAR.CLOCK;
TIME_LEFT := float(CALENDAR."-"(DEADLINE,
TIME_HACK));
DELAY_TIME := DURATION(TIME_ILEFT / 2.0);
if DELAY_TIME < DURATION'SMALL and then
DELAY_TIME > 0.0 then
DELAY_TIME := 0.0;
end if;
if DELAY_TIME > 0.0 then
put("delaying ");
put(float (DELAY_TIME));
put_line(" secs.");
HACK1l := CALENDAR.CLOCK;
delay DELAY_TIME;
HACK2 := CALENDAR.CLOCK;
put("Actual delay was ");
put(float (CALENDAR."-"(HACK2,HACKl)));
put_line(" secs.");
else
put ("DEADLINE expired by ");
put(float (CALENDAR."-"(TIME_HACK,
DEADLINE)));
put_line("™ secs.");
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STOP_COMPUTATION_FLAG := TRUE;
HANDLE (CURRENT_VALUR,
CURRENT_ERROR_INDICATOR);
end if;
exit when STOP_COMPUTATION_FLAG;
end loop;
end RUN_JOB;
end TIMER;

pgagsﬂq;e IMPCALL (THE_COMPUTATION in out

COMPUTATION_PTR;
in CALENDAR.TIME;
in INPUT_TYPE;

out RESULT_TYPE) |is

¢ P e -

DEADLINE
INPUT
FINAL_RESULT

begin
TIMER.RUN_JOB(THE_COMPUTATION,
INPUT,
DEADLINE);

FINAL_RESULT := CURRENT_VALUE;
end IMPCALL;

procedure IMPRETURN(INTERMEDIATE_RESULT : in
RESULT_TYPE;

ERROR_INDICATOR ¢ in
ERROR_INDICATOR_TYPE;
8TOP_FLAG ¢ in out
boolean) is
begin
1f not STOP_COMPUTATION_FLAG then
CURRENT_VALUE t= INTERMEDIATE_RESULT;
CURRENT_ERROR_INDICATOR := ERROR_INDICATOR;
end if;

-- If incoming stop flag is FALSE, then this is
-- merely a classic IMPRETURN call. If TRUE, then
-- this 1s a signal that the computation has
-- completed.
if not STOP_FLAG then
STOP_FLAG := STOP_COMPUTATION_FLAG;
else
STOP_COMPUTATION_FLAG := STOP_FLAG;
end 1f;
end IMPRETURN;

end ASYNCHRONOUS_IMPRECISE_COMPUTATION;
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with CALENDAR;
package SYNCHRONOUS_CIRCLE_COMPUTATION is

subtype RESULT_TYPE is float;
subtype ERROR_TYPE is integer;
type INPUT_TYPE is record
LOOPS_TO_COMPLETE : integer;
RADIUS : float;
end record;

task type TEST_TASK is

use CALENDAR;

entry INITIALIZE(INPUT : in INPUT_TYPE);

entry COMPUTE(COMPUTATION_COMPLETE
entry HANDLER(1 .. 2)(LAST_RESULT
LAST_ERROR
entry STOP;
end TEST_TASK;

type TEST_PTR is access TEST_TASK;

ou
in
in

t boolean);
RESULT_TYPE;
ERROR_TYPE);

procedure INITIALIZE(THE_TASK : in TEST_PTR;

INPUT

procedure COMPUTE(THE_TASK
COMPUTATION_COMPLETE

procedure HANDLE (THE_TASK
HANDLER_NUMBER
LAST_VALUE
LAST_ERROR_INDICATOR

procedure STOP(THE_TASK : in TEST_PTR)

end SYNCHRONOUS_CIRCLE_COMPUTATION;

.
14

in
ou

in
in
in
in

in INPUT_TYPE);

TEST_PTR;
t boolean);

TEST_PTR;
integer;
RESULT_TYPE;
ERROR_TYPE);
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with TEXT_IO; use TEXT_I0;
with FLOAT_TEXT_I10; use FLOAT_TEXT_I10;
with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;

with SYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION;
use SYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION;
with RANDOM_NUMBER_GENERATOR;
use RANDOM_NUMBER_GENERATOR;
package body SYNCHRONOUS_CIRCLE_COMPUTATION is

procedure INITIALIZE(THE_TASK : in TEST_PTR;
INPUT s in INPUT_TYPE) |is
begin
THE_TASK.INITIALIZE(INPUT);
end INITIALIZE;

procedure COMPUTE(THE_TASK : in TEST_PTR;
COMPUTATION_COMPLETE : out boolean) is
begin
THE_TASK . COMPUTE ( COMPUTATION_COMPLETE) ;
end COMPUTE;

procedure HANDLE(THE_TASK : in TEST_PTR;
HANDLER_NUMBER ¢ in integer;
LAST_VALUE : in RESULT_TYPE;
LAST_ERROR_INDICATOR : in ERROR_TYPE) is
begin
THE_TASK . HANDLER ( HANDLER _NUMBER)
(LAST_VALUE,
LAST_ERROR_INDICATOR);
end HANDLE;

procedure STOP(THE_TASK : in TEST_PTR) is
begin
THE_TASK.STOP;
end STOP;

task body TEST_TASK is

FINISHED : boolean 1= false;
ERROR : ERROR_TYPE := 0;
M ¢ integer t= 0;
N : integer t= 0;
RADIUS : float;
RADIUS_SQUARED : float;

DIAMETER : float;
SQUARE_AREA : float;

X, ¥ : float;

AREA : RESULT_TYPE;
LOOP _NUM : integer;

SEED ¢ integer;
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begin

accept INITIALIZE(INPUT : in INPUT_TYPE) do
RADIUS ¢= INPUT.RADIUS;
RADIUS_SQUARED := RADIUS *z 2.
DIAMETER :t= 2,0 * RADIUS;
SQUARE_AREA := DIAMETER ** 2;
LOOP_NUM ¢= INPUT.LOOPS_TO_COMPLETE;
SEED := 1;

end INITIALIZE;

loop
select

accept COMPUTE(COMPUTATION_COMPLETE : out
boolean) do
RANDOM(X,SEED);
RANDOM(Y, SEED) ;
X := X * DIAMETER - RADIUS;
:= Y * DIAMETER - RADIUS;
N := N + 1;
iIf (X*%2 + Y*%*2) <= RADIUS_SQUARED then
M :=M + 1;
end if;
ERROR := ERROR + 1;
if ERROR > LOOP_NUM then
COMPUTATION_COMPLETE := TRUE;
else
COMPUTATION_COMPLETE := FALSE;
end if;
if ERROR rem 10 = 0 or
ERROR > LOOP_NUM then
AREA := SQUARE_AREA *
float(M) / float(N);
IMPRETURN(AREA, ERROR);
end {f;
end COMPUTE;
or
accept HANDLER(1)
(LAST_RESULT in RESULT_TYPE;
LAST_ERROR : in ERROR_TYPE) do
-- output number of iterations --
put("Computation looped ");
put (LAST_ERROR);
put_line(" times.");
~- IMPRETURN 1f modification made --
end HANDLER;

. oo

or
accept HANDLER(2)
(LAST_RESULT : in RESULT_TYPE;
LAST_ERROR : in ERROR_TYPE) do
null; -- this handler does nothing --
-- IMPRETURN if modification made --
end HANDLER;
or




accept STOP do
FINISHED := true;
end STOP;
end select;
exit when FINISHED;
end loop;
end TEST_TASK;

end SYNCHRONOUS_CIRCLE_COMPUTATION;
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with SYNCHRONOUS_CIRCLE_COMPUTATION;

use SYNCHRONOUS_CIRCLE_COMPUTATION;

with SYNCHRONOUS_IMPRECISE_COMPUTATION;

package SYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION is
new SYNCHRONOUS_IMPRECISE_COMPUTATION

(COMPUTATION =>
COMPUTATION_PTR =>
RESULT_TYPE =>
ERROR_INDICATOR_TYPE =>
INPUT_TYPE =>
INITIALIZE =>
COMPUTE =>
HANDLE =>
STOP =>

TEST_TASK,
TEST_PTR,
RESULT_TYPE,
ERROR_TYPE,
INPUT_TYPE,
INITIALIZE,
COMPUTE,
HANDLE,
STOP);
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with SYNCHRONOUS_CIRCLE_COMPUTATION;

use

SYNCHRONOUS_CIRCLE_COMPUTATION;

with SYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION;

use SYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION;

with CALENDAR; use CALENDAR;

with TEXT_10; use TEXT_I0;

with FLOAT_TEXT_IO; use FLOAT_TEXT_IO;
with INTEGER_TEXT_IO; use INTEGER_TEXT_10;

procedure SYNCHRONOUS_CIRCLE_TEST is

pragma TIME_SLICE(0.01);

MY_TASK_PTR : TEST_PTR := new TEST_TASK;
DEAD ¢ CALENDAR.TIME;
RESULT ¢ RESULT_TYPE;
COMP_TIME : float;
Mi_INPUT s INPUT_TYPE;
begin

end

put("Enter the circle radius => ");
get (MY_INPUT.RADIUS);
put("Enter the number of iterations to complete => ");
get (MY_INPUT.LOOPS_TO_COMPLETE) ;
put ("Enter the computation duration in seconds => ");
Set (COMP_TIME);
put_line("Synchronous CIRCLE TEST starting...");
DEAD := CALENDAR.CLOCK + DURATION(COMP_TIME);
IMPCALL (MY_TASK_PTR,
1,
DEAD,
MY_INPUT,
RESULT);
put("TEST ending... RESULT => ");
put (RESULT, EXP => 0, AFT => 2);
new_line;
SYNCHRCONOUS_CIRCLE_TEST;




90

Appendix D

Asynchronous Circle Test Flles




with CALENDAR; use CALENDAR;
with SYSTEMNM; use SYSTEM;
package ASYNCHRONOUS_CIRCLE_COMPUTATION

subtype RESULT_TYPE is float;
subtype ERROR_TYPE is integer;

type INPUT_TYPE is record
LOOPS_TO_COMPLETE : integer;
RADIUS : float;
end record;

task type TEST_TASK is

pragma PRIORITY(O);

entry START_COMPUTATION(INPUT :
end TEST_TASK;

type TEST_PTR is access TEST_TASK;

procedure START_COMPUTATION(THE_TASK
INPUT

procedure HANDLE(LAST_VALUE

is

in INPUT_TYPE);

: in TEST_PTR;
: in INPUT_TYPE);

: in out
RESULT_TYPE;

LAST_ERROR_INDICATCR : in out

end ASYNCHRONOUS_CIRCLE_COMPUTATION;

ERROR_TYPE);
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with TEXT_I0; use TEXT_IO;
with FLOAT_TEXT_I10; use FLOAT_TEXT_I0;
with INTEGER_TEXT_IO use INTEGER_TEXT_IO;

with ASYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION;
use ASYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION;
with RANDOM_NUMBER_GENERATOR;
use RANDOM_NUMBER_GENERATOR;
package body ASYNCHRONOUS_CIRCLE_COMPUTATION is

procedure START_COMPUTATION(THE_TASK : in TEST_PTR;
INPUT : in INPUT_TYPE)
is
begin
THE_TASK.START_COMPUTATION(INPUT);
end START_COMPUTATION;

procedure HANDLE(LAST_VALUE ¢ in out
RESULT_TYPE;
LAST_ERROR_INDICATOR : in out
ERROR_TYPE) is
begin
put("Computation looped ");
put (LAST_ERROR_INDICATOR);
put_line(" times.");
end HANDLE;

task body TEST_TASK is

FINISHED : boolean := false;

ERROR ¢ ERROR_TYPE := 0;

M : integer t= 0;

N ¢ integer :t= 0;

RADIUS : £loat;

RADIUS_SQUARED : float;

DIAMETER : float;

SQUARE_AREA ¢ float;

X, ¥ : float;

AREA : float;

LOOP_NUM t integer;

SEED : integerx;

begin

accept START_COMPUTATION(INPUT : in INPUT_TYPE) do
RADIUS ¢= INPUT.RADIUS;
LOOP_NUM := INPUT.LOOPS_TG_COMPLETE;
RADIUS_SQUARED := RADIUS #** 2;
DIAMETER s= 2.0 * RADIUS;
SQUARE_AREA ¢t= DIAMETER ** 2;
SEED t= 1;

end START_COMPUTATION;
delay DURATION'SMALL;
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loop

RANDOM(X,SEED);

RANDOM(Y,SEED);

X := X * DIAMETER - RADIUS;

Y := Y * DIAMETER - RADIUS;

N :=N + 1;

i1 (X*%2 + Y*%2) <= RADIUS_SQUARED then
M := M+ 1;

end 1€;

ERROR := ERROR + 1;

if ERROR > LOOP_NUM then
FINISHED := TRUE;

end if;

if (ERROR rem 10 = 0) or FINISHED then
AREA := SQUARE_AREA * float(M) / float(N);
IMPRETURN(AREA, ERROR, FINISHED);

end {f;

exit when FINISHED;

end lecz;
end TEST_TASK;

end ASYNCHRONOUS_CIRCLE_COMPUTATION;
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with ASYNCHRONOUS_CIRCLE_COMPUTATION;

use ASYNCHRONOUS_CIRCLE_COMPUTATION;

with ASYNCHRONOUS_IMPRECISE_COMPUTATION;

package ASYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION is
new ASYNCHRONOUS_IMPRECISE_COMPUTATION

(COMPUTATION =>
COMPUTATION_PTR =>
RESULT_TYPE =
ERROR_INDICATOR_TYPE =>
INPUT_TYPE =
START_COMPUTATION =
HANDLE =

TEST_TASK,
TEST_PTR,
RESULT_TYPE,
ERROR_TYPE,
INPUT_TYPE,
START_COMPUTATION,
HANDLE) ;
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with ASYNCHRONOUS_CIRCLE_COMPUTATION;
use ASYNCHRONOUS_CIRCLE_COMPUTATION;
with ASYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION;
use ASYNCHRONOUS_CIRCLE_IMPRECISE_COMPUTATION;

with CALENDAR; use CALENDAR;

with TEXT_10; use TEXT_IO;

with FLOAT_TEXT_IO; use FLOAT_TEXT_IO;
with INTEGER_TEXT_I10; use INTEGRR_TEXT_10;

procedure ASYNCHRONOUS_CIRCLE_TEST |is

pragma TIME_SLICE(0.01);

MY_TASK_PTR : TEST_PTR := new TEST_TASK;
DEAD ¢ CALENDAR.TIME;
RESULT ¢ RESULT_TYPE;
COMP_TIME : float;
MY_INPUT : INPUT_TYPE;
begin

put("Enter the circle radius => ");
get (MY_INPUT.RADIUS);
put("Enter the number of iterations to complete => ");
get (MY_INPUT.LOOPS_TO_COMPLETE);
put("Enter the computation duration in seconds => ");
get (COMP_TIME;};
put_line("Asynchronous CIRCLE TEST starting...");
DEAD := CALENDAR.CLOCK + DURATION(COMP_TIME);
IMPCALL (MY_TASK_PTR,
DEAD,
MY_INPUT,
RESULT);
put("CIRCLE TEST ending... CIRCLE AREA RESULT => ");
put (RESULT, EXP => 0, AFT => 2);
new_line;
end ASYNCHRONOUS_CIRCLE_TEST;
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Synchronous Jacobi Test Files
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with CALENDAR; use CALENDAR;
package SYNCHRONOUS_JACOBI_COMPUTATION is

N : constant integer := 3;
type RESULT_TYPE is array(l .. N) of float;
subtype ERROR_TYPE is integer;

type COEFFICIENT_TYPE is array(l .. N, 1 .. N)
of float;

type INPUT_TYPE is record

COEFFICIENTS : COEFFICIENT_TYPE;
RIGHT_HAND_SIDE : RESULT_TYPE;

XOLD ¢ RESULT_TYPE;

TOL ¢ float;

end record;

task type TEST_TASK |is
entry INITIALIZE(INPUT : in INPUT_TYPEB);
entry COMPUTE(COMPUTATION_COMPLETE : out boolean);
entry HANDLER(1 .. 2)
(LAST_RESULT : in RESULT_TYPE;
LAST_ERROR : in ERROR_TYPE);
entry STOP;
end TEST_TASK;

type TEST_PTR is access TEST_TASK;

procedure INITIALIZE(THE_TASK
INPUT

in TEST_PTR;
in INPUT_TYPE);

procedure COMPUTE(THE_TASK
COMPUTATION_COMPLETE

in TEST_PTR;
out boolean);

se oo

procedure HANDLE(THE_TASK s In TEST_PTR;
HANDLER_NUMBER t in integer;
LAST_VALUE ¢ in RESULT_TYPE;
LAST_ERROR_INDICATOR : in ERROR_TYPE);

procedure STOP(THE_TASK : in TEST_PTR);

end SYNCHRONOUS_JACOBI_COMPUTATION;




with TEXT_IO; use TEXT_IO;
with FLOAT_TEXT_IO; use FLOAT_TEXT_I0;
with INTEGER_TEXT_I10; use INTEGER_TEXT_IO;

with SYNCHRONOUS_JACOBI_IMPRECISE_COMPUTATION;
use SYNCHRONOUS_JACOBI_IMPRECISE_COMPUTATION;
package body SYNCHRONOUS_JACOBI_COMPUTATION is

procedure INITIALIZE(THE_TASK
INPUT

: in TEST_PTR;
: in INPUT_TYPE) is
begin
THE_TASK.INITIALIZE(INPUT);
end INITIALIZE;

procedure COMPUTE(THE_TASK : in TEST_PTR;
COMPUTATION_COMPLETE : out boolean) is

begin
THE_TASK . COMPUTE ( COMPUTATION_COMPLETE) ;
end COMPUTE;

procedure HANDLE (THE_TASK : in TEST_PTR;
HANDLER_NUMBER ¢ in integer;
LAST_VALUE ¢ in RESULT_TYPE;
LAST_ERROR_INDICATOR : in ERROR_TYPE) is

begin
THE_TASK . HANDLER (HANDLER_NUMBER)
(LAST_VALUE, LAST_ERROR_INDICATOR);
end HANDLE;

procedure STOP(THE_TASK : in TEST_PTR) |is
begin
THE_TASK.STOP;
end STOP;

task body TEST_TASK is

FINISHED : boolean := false;

ERROR ¢ ERROR_TYPE := 0;

COEFF ¢ COEFFICIENT_TYPE;

R_H_S ¢ RESULT_TYPE; -- right-hand-side --
XOLD : RESULT_TYPE; -- solution guess --
TOL ¢ float; -- tolerance --

XNEW : RESULT_TYPE; -- new solutjon --

C ¢t COEFFICIENT_TYPE; -- norm coeff

D ¢ RESULT_TYPE; -- normalized r-h-s
MAXNEWV,

NNEW, -—"NEW" in text but an Ada reserved word.
MAXDIF,

DIFF : float;




begin

accept INITIALIZE(INPUT : in INPUT_TYPE) do

end

loop

COEFF := INPUT.COEFFICIENTS;
R_H_S := INPUT.RIGHT_HAND_SIDE;
XOLD := INPUT.XOLD;

TOL := INPUT.TOL;

-- Normalize matrix --
for J in 1 .. N loop
for K inl1l .. J - 1 loop
C(J,K) := COEFF(J,K) / COEFF(J,J);
end loop;
for K in J + 1 .. N loop
C(J,K) := COEFF(J,K) / COEFF(J,J);
end loop;
D(J) := R_H_S(J) / COEFF(J,J);
end loop;
INITIALIZE;

select
accept COMPUTE (COMPUTATION_COMPLETE : out
boolean) do
MAXNEW := 0.0;
MAXDIF := 0.0;
for J in 1 .. N loop
XNEW(J) := D(J);
for K inl1 .. J - 1 loop
XNEW(J) := XNEW(J) - C(J,K)
* XOLD(K);
end loop;
for K in J + 1 .. N loop
XNEW(J) := XNEW(J) - C(J,K)
% XOLD(K};
end loop;

-- Find max absolute difference
-- between o0ld and new elements.
DIFF := ABS(XNEW(J) - XOLD(J));
if DIFF > MAXDIF then
MAXDIF := DIFF;
end if;
NNEW := ABS(XNEW(J));
i1f NNEW > MAXNEW then
MAXNEW := NNEW;
end {f;
end loop;
ERROR := ERROR + 1;

~- Let present estimate be improved
-- estimate
XOLD(1 .. N) := XNEW(1 .. N);
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i1f MAXNEW /= 0.0 and then
(MAXDIF / MAXNEW) <= TOL then
COMPUTATION_COMPLETE := TRUE;
else
COMPUTATION_COMPLETE := FALSE;
end if;

~- Report current result --
IMPRETURN (XNEW, ERROR);

end COMPUTE;

or
accept HANDLER(1)
(LAST_RESULT : in RESULT_TYPE;
LAST_ERROR : in ERROR_TYPE) do
put("Computation looped ");
put (LAST_ERROR) ;
put_line(” times.");
-- IMPRETURN if modification made --
end HANDLER;
or

accept HANDLER(2)
(LAST_RESULT : in RESULT_TYPE;
LAST_ERROR : in ERROR_TYPE) do
null; -- this handler does nothing --
-- IMPRETURN if modification made --
end HANDLER;
or
accept STOP do
FINISHED := true;
end STOP;
end select;
exit when FINISHED;
end loop;
end TEST_TASK;

end SYNCHRONOUS_JACOBI_COMPUTATION;




with SYNCHRONOUS_JACOBI _COMPUTATION;

use SYNCHRONOUS_JACOBI_COMPUTATION;

with SYNCHRONOUS_IMPRECISE_COMPUTATION;

package SYNCHRONOQUS_JACOBI_IMPRECISE_COMPUTATION
new SYNCHRONOUS_IMPRECISE_COMPUTATION

(COMPUTATION =>
COMPUTATION_PTR =>
RESULT_TYPE =>
ERROR_INDICATOR_TYPE =>
INPUT_TYPE =>
INITIALIZE =>
COMPUTE =>
HANDLE =>
sSTOP =>

TEST_TASK,
TEST_PTR,
RESULT_TYPE,
ERROR_TYPE,
INPUT_TYPE,
INITIALIZE,
COMPUTE,
HANDLE,
STOP);

is
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with SYWCHRONOUS_JACOBI_COMPUTATION;
use SYNCHRONOUS_JACOBI_COMPUTATION;
with SYNCHRONOUS_JACOBI_IMPRECISE_COMPUTATION;
use SYNCHRONOUS_JACOBI_IMPRECISE_COMPUTATION;

with CALENDAR; use CALENDAR;

with TEXT_IO; uae TEXT_IO;

with FLOAT_TEXT_IO; use FLOAT_TEXT_IO;
with INTEGER_TEXT_I10; use INTEGER_TEXT_IO;

procedure SYNCHRONOUS_JACOBI_TEST is

MY_TASK_PTR TEST_PTR := new TEST_TASK;

DEAD : CALENDAR.TIME;

RESULT : RESULT_TYPE;

COMP_TIME : float;

INPUT : INPUT_TYPE;
begin

for INDEX in 1 .. N loop
put_line("Enter the coefficients and " &
"right hand side for equation " &
integer'image(INDEX));
for NUM_COEFF in 1 .. N loop
get (INPUT.COEFFICIENTS (INDEX,NUM_COEFF));
end loop;
get (INPUT.RIGHT_HAND_SIDE(INDEX));
end loop;
for INDEX in 1 .. N loop
INPUT.XOLD(INDEX) := 0.0;
end loop;
put("Enter tolerance factor => ");
get (INPUT.TOL);
put("Enter the computation duration in seconds => ");
get (COMP_TIME);
put_line("Synchronous Jacobi test starting...");
DEAD := CALENDAR.CLOCK + DURATION(COMP_TIME);
IMPCALL (MY_TASK_PTR,
1,
DEAD,
INPUT,
RESULT);
put_line("Jacobi TEST ending... ");
for INDEX in 1 .. N loop
put("x");
put (INDEX,WIDTH => 1);
put(®™ => ");
put (RESULT(INDEX), EXP => 0);
new_lire,
end loop;
end SYNCHRONOUS_JACOBI_TEST;
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Appendix F

Asynchronous Jacobil Test Files




with CALENDAR; use CALENDAR;
with SYSTEMN; use SYSTEM;

N : constant integer := 3;

subtype ERROR_TYPE is integer;

type INPUT_TYPE is record

end record;

task type TEST_TASK is
pragma PRIORITY(0);

end TEST_TASK;
type TEST_PTR is access TEST_TASK;

procedure START_COMPUTATION(THE_TASK
INPUT

procedure HANDLE(LAST_VALUE

LAST_ERROR_INDICATOR

end ASYNCHRONOUS_JACOBI_COMPUTATION;

package ASYNCHRCNGUS_JACOBI_COMPUTATION is

type COEFFICIENT_TYPE is array(l .. N, 1

COEFFICIENTS ¢ COEFFICIENT_TYPE;
RIGHT_HAND_SIDE : RESULT_TYPE;
XOLD ¢ RESULT_TYPE;

TOL : float;

s 1
I
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type RESULT_TYPE is array (1 .. N) of float;

.. N) of float;

entry START_COMPUTATION(INPUT : in INPUT_TYPE);

n TEST_PTR;
n INPUT_TYPE);

in out
RESULT_TYPE;

in out
ERROR_TYPE);
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with TEXT_I0; use TEXT_IO;
with FLOAT_TEXT_IO; use FLOAT_TEXT_IO;
with INTEGER_TEXT_IO; use INTEGER_TEXT_10;
with ASYNCHRONOUS_JACOBI_IMPRECISE_COMPUTATION;
nse ASYNCHRONOUS_JACOBI_IMPRECISE_COMPUTATION;
package body ASYNCHRONOUS_JACCBI_COMPUTATION is
procedure START_COMPUTATION(THE_TASK : in TEST_PTR;
INPUT : In INPUT_TYPE) is

begin
THE_TASK.START_COMPUTATION(INPUT);
end START_COMPUTATION;

procedure HANDLE(LAST_VALUB : in out
RESULT_TYPE;
LAST_ERROR_INDICATOR : in out

ERROR_TYPE) is
begin
put("Computation looped ");
put (LAST_ERROR_INDICATOR);
put_line(" times.");
end HANDLE;

task body TEST_TASK is

FINISHED : boolean := false;
ERROR ¢ ERROR_TYPE := 0;
COEFF ¢ COEFFICIENT_TYPE; -- coefficient input
R_H_S ¢ RESULT_TYPE; -- right-hand-side
XOLD : RESULT_TYPE; -~ solution gquess
TOL ¢ float; -- tolerance
XNEW ! RESULT_TYPE; -- new solution vector
C ¢ COEFFICIENT_TYPE; -- norm input coeff
D ¢ RESULT_TYPE; ~-- normalized r_h_s
MAXNEW,
NNEW, ~= "new" in text but reserved
MAXDIF,
DiFP s float;

begin

accept START_COMPUTATION(INPUT : in INPUT_TYPE) do
COEFF := INPUT.COEFFICIENTS;
R_H_S := INPUT.RIGHT_HAND_SIDE;
XOLD := INPUT.XOLD;
TOL ¢:= INPUT.TOL;
end START_COMPUTATION;
delay duration'small;

-- Normalize matrix --
for J in 1 .. N loop
for K inl1 .. J - 1 loop
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C(J,K) := COEFF(J, K) / COEFF(J, J);
end loop;
for K inJ + 1 .. N loop
C(J,K) := COEFF(J, K) / COEFF(J, J);
end loop;
D(J) := R_H_S(J) / COEFF(J, J);
end loop;

-- Iterate improvement until required
-- accuracy is achieved
loop
MAXNEW := 0.0;
MAXDIF := 0.0;
for J in 1 .. N loop
XNEW(J) := D(J);
for K inl1l .. J - 1 loop
XNEW(J) := XNEW(J) - C(J,K) * XOLD(K);
end loop;
for K in J + 1 .. N loop
XNEW(J) := XNEW(J) - C(J,K) * XOLD(K);
end loop;

-- Find max absolute difference
-- between o0ld and new elements.
DIFF := ABS(XNEW(J) - XOLD(J));
if DIFF > MAXDIF then
MAXDIF := DIFF;
end if;
NNEW := ABS(XNEW(J));
1f NNEW > MAXNEW then
MAXNEW := NNEW;
end if;
end loop;

-- Let present estimate be improved estimate
XOLD(1 .. N) := XNEW(1l .. N);
ERROR := ERROR + 1;
if MAXNEW /= 0.0 and then
(MAXDIF / MAXNEW) <= TOL then
FINISHED := TRUE;
end if;
IMPRETURN(XNEW, ERROR, FINISHED);
exit when FINI3HED;
end loop;

exception
when CONSTRAINT_ERROR | NUMERIC_ERROR =>
put_line("NUMERIC ERROR - Diverging solution");
end TEST_TASK;

end ASYNCHRONOUS_JACOBI _COMPUTATION; \

L----------
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with ASYNCHRONOUS_JACOBI_COMPUTATION;

use ASYNCHRONOUS_JACOBI_CCMPUTATION;

with ASYNCHRONOUS_IMPRECISE_COMPUTATION;

package ASYNCHRONOUS_JACOBI_IMPRECISE_COMPUTATION is
new ASYNCHRONOUS_IMPRECISE_COMPUTATION

( COMPUTATION =>
COMPUTATION_PTR =>
RESULT_TYPE =>
ERROR_INDICATOR_TYPE =>
INPUT_TYPE =>
START_COMPUTATION 2>
HANDLE =>

TEST_TASK,
TEST_PTR,
RESULT_TYPE,
ERROR_TYPE,
INPUT_TYPE,
START_COMPUTATION,
HANDLE) ;
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with ASYNCHRONOUS_JACOBI_COMPUTATION;
use ASYNCHRONOUS_JACOBI_COMPUTATION;
with ASYNCHRONOUS_JACOBI_IMPRECISE_COMPUTATION;
use ASYNCHRONOUS_JACOBI_IMPRECISE_COMPUTATION;

with CALENDAR; use CALENDAR;

with TEXT_IO; use TEXT_I10;

with FLOAT_TEXT_IO; use FLOAT_TEXT_IO;
with INTEGER_TEXT_10; use INTEGER_TEXT_I0;

procedure ASYNCHRONOUS_JACOBI_TEST |is

pragma TIME_SLICE(0.01);

MY_TASK_PTR : TEST_PTR := new TEST_TASK;
DEAD ¢ CALENDAR.TIME;
RESULT ¢ RESULT_TYPE;
COMP_TIME : float;
INPUT : INPUT_TYPE;
begin

for INDEX in 1l .. N loop
put_line("Enter the coefficients and " &
"right hand side for equation " &
integer'image(INDEX));
for NUM_COEFF in 1 .. N loop
get (INPUT.COEFFICIENTS (INDEX,NUM_COEFF));
end loop;
get (INPUT.RIGHT_HAND_SIDE(INDEX));
end loop; ;
for INDEX in 1 .. N loop
INPUT.XOLD(INDEX) := 0.0;
end loop;
put("Enter tolerance factor => ");
get (INPUT.TOL);
put("Enter the computation duration in seconds => ");
get (COMP_TIME);
put_line("Asynchronous Jacobi TEST starting...");
DEAD := CALENDAR.CLOCK + DURATION(COMP_TIME);
IMPCALL (MY_TASK_PTR,
DEAD,
INPUT,
RESULT);
put_line("Jacobi TEST ending... ");
for INDEX in 1 .. N loop
put("X");
put (INDEX,WIDTH => 1);
put(" => ");
put (RESULT(INDEX), EXP => 0);
new_line;
end loop;
end ASYNCHRONOUS_JACOBI_TEST;
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